Cervical cancer is a prevalent and concerning disease affecting women, with increasing incidence and mortality rates. Early detection plays a crucial role in improving outcomes. Recent advancements in computer vision, particularly the Swin transformer, have shown promising performance in image classification tasks, rivaling or surpassing traditional convolutional neural networks (CNNs). The Swin transformer adopts a hierarchical and efficient approach using shifted windows, enabling the capture of both local and global contextual information in images. In this paper, we propose a novel approach called Swin-GA-RF to enhance the classification performance of cervical cells in Pap smear images. Swin-GA-RF combines the strengths of the Swin transformer, genetic algorithm (GA) feature selection, and the replacement of the softmax layer with a random forest classifier. Our methodology involves extracting feature representations from the Swin transformer, utilizing GA to identify the optimal feature set, and employing random forest as the classification model. Additionally, data augmentation techniques are applied to augment the diversity and quantity of the SIPaKMeD1 cervical cancer image dataset. We compare the performance of the Swin-GA-RF Transformer with pre-trained CNN models using two classes and five classes of cervical cancer classification, employing both Adam and SGD optimizers. The experimental results demonstrate that Swin-GA-RF outperforms other Swin transformers and pre-trained CNN models. When utilizing the Adam optimizer, Swin-GA-RF achieves the highest performance in both binary and five-class classification tasks. Specifically, for binary classification, it achieves an accuracy, precision, recall, and F1-score of 99.012, 99.015, 99.012, and 99.011, respectively. In the five-class classification, it achieves an accuracy, precision, recall, and F1-score of 98.808, 98.812, 98.808, and 98.808, respectively. These results underscore the effectiveness of the Swin-GA-RF approach in cervical cancer classification, demonstrating its potential as a valuable tool for early diagnosis and screening programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294103PMC
http://dx.doi.org/10.3389/fonc.2024.1392301DOI Listing

Publication Analysis

Top Keywords

swin transformer
20
cervical cancer
20
random forest
12
cancer classification
12
classification
9
classification tasks
8
pre-trained cnn
8
cnn models
8
five-class classification
8
classification achieves
8

Similar Publications

Automatic segmentation of white matter lesions on multi-parametric MRI: convolutional neural network versus vision transformer.

BMC Neurol

January 2025

Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.

Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.

Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).

View Article and Find Full Text PDF

Objective digital measurement of gamblers visiting gambling venues is conducted using cashless cards and facial recognition systems, but these methods are confined within a single gambling venue. Hence, we propose an objective digital measurement method using a transformer, a state-of-the-art machine learning approach, to detect total gambling venue visitations for gamblers who visit multiple gambling venues using sounds in gamblers' environments. We sampled gambling and nongambling event datasets from websites to create a gambling play classifier.

View Article and Find Full Text PDF

Background: Wireless capsule endoscopy (WCE) has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology. However, the complexity of the digestive tract structure, and the diversity of lesion types, results in different sites and types of lesions distinctly appearing in the images, posing a challenge for the accurate identification of digestive tract diseases.

Aim: To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions, thereby improving the diagnostic efficiency of doctors, and creating significant clinical application value.

View Article and Find Full Text PDF

Unlabelled: EEG signals play a crucial role in assessing cognitive load, which is a key element in ensuring the secure operation of human-computer interaction systems. However, the variability of EEG signals across different subjects poses a challenge in applying the pre-trained cognitive load assessment model to new subjects. Moreover, previous domain adaptation research has primarily focused on developing complex network architectures to learn more domain-invariant features, overlooking the noise introduced by pseudo-labels and the challenges posed by domain migration problems.

View Article and Find Full Text PDF

To develop and validate a modality-invariant Swin U-Net Transformer (UNETR) deep learning model for liver and spleen segmentation on abdominal T1-weighted (T1w) or T2-weighted (T2w) MR images from multiple institutions for pediatric and adult patients with known or suspected chronic liver diseases. In this IRB-approved retrospective study, clinical abdominal axial T1w and T2w MR images from pediatric and adult patients were retrieved from four study sites, including Cincinnati Children's Hospital Medical Center (CCHMC), New York University (NYU), University of Wisconsin (UW) and University of Michigan / Michigan Medicine (UM). The whole liver and spleen were manually delineated as the ground truth masks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!