The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC291770 | PMC |
http://dx.doi.org/10.1128/aem.50.4.924-929.1985 | DOI Listing |
Phytochemistry
January 2025
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. Electronic address:
Nine undescribed prenylxanthone derivatives, aspergixanthones L-T (1-9), were isolated from the fungus Aspergillus stellatus. Compound 4 represents the first propionylated prenylxanthone, while compounds 7-9 are the first examples of prenylxanthones adorned with a 2,3-butanediol group. Their structures with absolute configurations were elucidated based on comprehensive spectroscopic analyses, ECD calculation, single-crystal X-ray diffraction, Mo(OAc) induced ECD experiment, and Mosher's method.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Electronic address:
Zymomonas mobilis is an ethanologenic bacterium that has been used for over 1500 years to produce alcoholic beverages. Recently, this microbe has become a top candidate for biofuel production due to its efficient metabolism. Z.
View Article and Find Full Text PDFFront Chem
January 2025
GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain.
Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Science, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
Acetoin (AC) and 2,3-butanediol (2,3-BDO) are metabolites produced by lactic acid bacteria using glucose as a carbon source. These two metabolites act as carbon reserves and can be reutilised by the cells. In this study, we investigated the enzymatic characteristics of acetoin reductase (ButA) and 2,3-butanediol dehydrogenase (ButB).
View Article and Find Full Text PDFBioresour Technol
January 2025
Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria. Electronic address:
The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!