Background: Progress in research on expression profiles in osteoarthritis (OA) has been limited to individual tissues within the joint, such as the synovium, cartilage, or meniscus. This study aimed to comprehensively analyze the common gene expression characteristics of various structures in OA and construct a diagnostic model.

Methods: Three datasets were selected: synovium, meniscus, and knee joint cartilage. Modular clustering and differential analysis of genes were used for further functional analyses and the construction of protein networks. Signature genes with the highest diagnostic potential were identified and verified using external gene datasets. The expression of these genes was validated in clinical samples by Real-time (RT)-qPCR and immunohistochemistry (IHC) staining. This study investigated the status of immune cells in OA by examining their infiltration.

Results: The merged OA dataset included 438 DEGs clustered into seven modules using WGCNA. The intersection of these DEGs with WGCNA modules identified 190 genes. Using Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest algorithms, nine signature genes were identified (), each demonstrating substantial diagnostic potential (areas under the curve from 0.701 to 0.925). Furthermore, dysregulation of various immune cells has also been observed.

Conclusion: demonstrated significant diagnostic efficacy in OA and are involved in immune cell infiltration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298182PMC
http://dx.doi.org/10.2147/JIR.S472118DOI Listing

Publication Analysis

Top Keywords

signature genes
12
diagnostic potential
8
immune cells
8
genes
6
diagnostic
5
development validation
4
validation diagnostic
4
diagnostic models
4
models transcriptomic
4
transcriptomic signature
4

Similar Publications

Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.

ACS Nano

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.

View Article and Find Full Text PDF

A Golgi apparatus‑related subtype and risk signature predicts prognosis and evaluates immunotherapy response in gastric cancer.

Discov Oncol

January 2025

Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264001, China.

Background: Gastric cancer (GC) remains a significant health burden, calling for the discovery of novel biomarkers. Golgi apparatus, a crucial cellular organelle involved in tumorigenesis, remains underexplored in GC research. A comprehensive understanding of its role and associated mechanisms is urgently needed.

View Article and Find Full Text PDF

Identification of pain-related long non-coding RNAs for pulpitis prediction.

Clin Oral Investig

January 2025

Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.

Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).

View Article and Find Full Text PDF

Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.

View Article and Find Full Text PDF

Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!