By merging advanced dimensionality reduction (DR) and clustering algorithm (CA) techniques, our study advances the sampling procedure for predicting NMR chemical shifts (CS) in intrinsically disordered proteins (IDPs), making a significant leap forward in the field of protein analysis/modeling. We enhance NMR CS sampling by generating clustered ensembles that accurately reflect the different properties and phenomena encapsulated by the IDP trajectories. This investigation critically assessed different rapid CS predictors, both neural network (e.g., Sparta+ and ShiftX2) and database-driven (ProCS-15), and highlighted the need for more advanced quantum calculations and the subsequent need for more tractable-sized conformational ensembles. Although neural network CS predictors outperformed ProCS-15 for all atoms, all tools showed poor agreement with H CSs, and the neural network CS predictors were unable to capture the influence of phosphorylated residues, highly relevant for IDPs. This study also addressed the limitations of using direct clustering with collective variables, such as the widespread implementation of the GROMOS algorithm. Clustered ensembles (CEs) produced by this algorithm showed poor performance with chemical shifts compared to sequential ensembles (SEs) of similar size. Instead, we implement a multiscale DR and CA approach and explore the challenges and limitations of applying these algorithms to obtain more robust and tractable CEs. The novel feature of this investigation is the use of solvent-accessible surface area (SASA) as one of the fingerprints for DR alongside previously investigated α carbon distance/angles or ϕ/ψ dihedral angles. The ensembles produced with SASA tSNE DR produced CEs better aligned with the experimental CS of between 0.17 and 0.36 r (0.18-0.26 ppm) depending on the system and replicate. Furthermore, this technique produced CEs with better agreement than traditional SEs in 85.7% of all ensemble sizes. This study investigates the quality of ensembles produced based on different input features, comparing latent spaces produced by linear vs nonlinear DR techniques and a novel integrated silhouette score scanning protocol for tSNE DR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412307PMC
http://dx.doi.org/10.1021/acs.jcim.4c00809DOI Listing

Publication Analysis

Top Keywords

neural network
12
nmr chemical
8
intrinsically disordered
8
disordered proteins
8
dimensionality reduction
8
reduction clustering
8
chemical shifts
8
clustered ensembles
8
network predictors
8
ensembles produced
8

Similar Publications

Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network.

Network

December 2024

Department of Electronics and Communication Engineering, Dronacharya Group of Institutions, Greater Noida, UP, India.

Speaker verification in text-dependent scenarios is critical for high-security applications but faces challenges such as voice quality variations, linguistic diversity, and gender-related pitch differences, which affect authentication accuracy. This paper introduces a Gender-Aware Siamese-Triplet Network-Deep Neural Network (ST-DNN) architecture to address these challenges. The Gender-Aware Network utilizes Convolutional 2D layers with ReLU activation for initial feature extraction, followed by multi-fusion dense skip connections and batch normalization to integrate features across different depths, enhancing discrimination between male and female speakers.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!