This paper investigated the effect of total saponins from Rhizoma Panacis Majoris on the proliferation, apoptosis, and autophagy of human cervical carcinoma HeLa cells. The saponin content was detected by ultraviolet-visible spectrophotometry. Cell coun-ting kit-8(CCK-8) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, and flow cytometry were used to detect the effects of total saponins of Panacis Majoris Rhizoma on cell viability, morphology, cell cycle and apoptosis of HeLa cells. Western blot was used to detect the expression of apoptosis-related proteins B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved caspase-9, and cleaved caspase-3, autophagy-related proteins Beclin-1 and SQSTM1(p62), and the proteins related to the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) and mitogen-activated protein kinase(MAPK) signaling pathways. It was found that the yield and saponin content of total saponins from Rhizoma Panacis Majoris were 6.3% and 78.3%, respectively. Total saponins from Rhizoma Panacis Majoris could significantly inhibit the proliferation(P<0.001), effect the nuclear morphology, block the G_0/G_1 cycle, and induce cell apoptosis in HeLa cells with a concentration-dependent manner. In addition, total saponins from Rhizoma Panacis Majoris up-regulated the expression of pro-apoptotic proteins Bax, cleaved caspase-9, and cleaved caspase-3, and autophagy-related protein p62(P<0.05), while down-regulated the expression of anti-apoptotic protein Bcl-2 and autophagy-related protein Beclin-1(P<0.01). Total saponins from Rhizoma Panacis Majoris could promote the expression of p-p38/p38, p-Jun N-terminal kinase(JNK)/JNK, p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR proteins in PI3K/Akt/mTOR and MAPK signaling pathways(P<0.05). In contrast, the effect on p-ERK/ERK expression was not obvious. Therefore, total saponins from Rhizoma Panacis Majoris may inhibit autophagy and promote apoptosis of HeLa cells through the activation of the PI3K/Akt/mTOR, c-JNK, and p38 MAPK signaling pathways, which indicates that total saponins from Rhizoma Panacis Majoris may have a potential role in cervical cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240304.401DOI Listing

Publication Analysis

Top Keywords

total saponins
36
panacis majoris
36
saponins rhizoma
28
rhizoma panacis
28
hela cells
16
apoptosis hela
12
saponins
9
panacis
9
majoris
9
rhizoma
9

Similar Publications

Germination and False Germination Increase the Levels of Bioactive Steroidal Saponins in Oats.

J Agric Food Chem

January 2025

Laboratory for Functional Food and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States.

The health benefits of oats, particularly their enhanced nutritional and bioactive properties when sprouted, are well-documented. However, changes in steroidal saponins during germination and false germination are lacking. This study explored the influence of various temperatures (20, 25, and 30 °C) and durations (1, 3, 5, and 7 days) on the steroidal saponin profiles in both germinated and false-germinated oats and assessed their anti-inflammatory activities.

View Article and Find Full Text PDF

Rationale: Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM.

View Article and Find Full Text PDF

The Effect of Seasonal and Annual Variation on the Quality of Hua Rhizomes.

Plants (Basel)

December 2024

Zhejiang Academy of Forestry, Hangzhou 310023, China.

This study aims to reveal the interannual and seasonal variations in functional components in Hua. rhizomes and evaluate whether the variations significantly affect the quality of rhizomes as a traditional Chinese herbal medicine. The interannual and seasonal variations in total flavonoid content and total saponin content were analyzed.

View Article and Find Full Text PDF

Genome-Wide Identification and Characterization of Gene Family in (Cucurbitaceae).

Life (Basel)

December 2024

Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.

is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!