Background: Information about the development of cognitive skills and the effect of sensory integration in children using auditory brainstem implants (ABIs) is still limited.
Objective: This study primarily aims to investigate the relationship between sensory processing skills and attention and memory abilities in children with ABI, and secondarily aims to examine the effects of implant duration on sensory processing and cognitive skills in these children.
Methods: The study included 25 children between the ages of 6 and 10 years (mean age: 14 girls and 11 boys) with inner ear and/or auditory nerve anomalies using auditory brainstem implants. Visual-Aural Digit Span Test B, Marking Test, Dunn Sensory Profile Questionnaire were applied to all children.
Results: The sensory processing skills of children are statistically significant and positive, and moderately related to their cognitive skills. As the duration of implant use increases, better attention and memory performances have been observed (p < .05).
Conclusion: The study demonstrated the positive impact of sensory processing on the development of memory and attention skills in children with ABI. It will contribute to evaluating the effectiveness of attention, memory, and sensory integration skills, and aiding in the development of more effective educational strategies for these children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298688 | PMC |
http://dx.doi.org/10.1002/brb3.3637 | DOI Listing |
JMIR Form Res
January 2025
Faculty of Audiology and Speech Language Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
Background: The prevalence of hearing loss in infants in India varies between 4 and 5 per 1000. Objective-based otoacoustic emissions and auditory brainstem response have been used in high-income countries for establishing early hearing screening and intervention programs. Nevertheless, the use of objective screening tests in low- and middle-income countries (LMICs) such as India is not feasible.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Audiology and Otoneurological Explorations, Civil Hospitals of Lyon, 69003 Lyon, France.
: Objective: To discuss therapeutic outcomes in patients with symptomatic near-narrow internal auditory canal (NNIAC). : We retrospectively analyzed the records of 26 symptomatic patients diagnosed with NNIAC, who had been treated with anti-epileptic drugs. In addition to clinical and radiological data, we recorded I-III latencies of auditory brainstem responses prior to and after medical therapy.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Medicine (Baltimore)
January 2025
Department of Neurology and Geriatrics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China.
The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed.
View Article and Find Full Text PDFThe cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!