A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

scTab: Scaling cross-tissue single-cell annotation models. | LitMetric

Identifying cellular identities is a key use case in single-cell transcriptomics. While machine learning has been leveraged to automate cell annotation predictions for some time, there has been little progress in scaling neural networks to large data sets and in constructing models that generalize well across diverse tissues. Here, we propose scTab, an automated cell type prediction model specific to tabular data, and train it using a novel data augmentation scheme across a large corpus of single-cell RNA-seq observations (22.2 million cells). In this context, we show that cross-tissue annotation requires nonlinear models and that the performance of scTab scales both in terms of training dataset size and model size. Additionally, we show that the proposed data augmentation schema improves model generalization. In summary, we introduce a de novo cell type prediction model for single-cell RNA-seq data that can be trained across a large-scale collection of curated datasets and demonstrate the benefits of using deep learning methods in this paradigm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298532PMC
http://dx.doi.org/10.1038/s41467-024-51059-5DOI Listing

Publication Analysis

Top Keywords

cell type
8
type prediction
8
prediction model
8
data augmentation
8
single-cell rna-seq
8
data
5
sctab scaling
4
scaling cross-tissue
4
single-cell
4
cross-tissue single-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!