Depression is a prevalent and intricate mental disorder. The involvement of small RNA molecules, such as microRNAs in the pathogenesis and neuronal mechanisms underlying the depression have been documented. Previous studies have demonstrated the involvement of microRNA-143-3p (miR-143-3p) in the process of fear memory and pathogenesis of ischemia; however, the relationship between miR-143-3p and depression remains poorly understood. Here we utilized two kinds of mouse models to investigate the role of miR-143-3p in the pathogenesis of depression. Our findings reveal that the expression of miR-143-3p is upregulated in the ventral hippocampus (VH) of mice subjected to chronic restraint stress (CRS) or acute Lipopolysaccharide (LPS) treatment. Inhibiting the expression of miR-143-3p in the VH effectively alleviates depressive-like behaviors in CRS and LPS-treated mice. Furthermore, we identify Lasp1 as one of the downstream target genes regulated by miR-143-3p. The miR-143-3p/Lasp1 axis primarily affects the occurrence of depressive-like behaviors in mice by modulating synapse numbers in the VH. Finally, miR-143-3p/Lasp1-induced F-actin change is responsible for the synaptic number variations in the VH. In conclusion, this study enhances our understanding of microRNA-mediated depression pathogenesis and provides novel prospects for developing therapeutic approaches for this intractable mood disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298515 | PMC |
http://dx.doi.org/10.1038/s42003-024-06639-y | DOI Listing |
Clin Epigenetics
January 2025
Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!