Aristolochic acid nephropathy (AAN) is a rapidly progressive kidney disease caused by medical or environmental exposure to aristolochic acids (AAs). This study aimed to identify serum metabolites associated with the severity of acute AAN and investigate the underlying mechanisms. Male C57BL/6 mice were treated with vehicle and 3 doses of aristolochic acid I (AAI) (1.25, 2.5, and 5 mg/kg/d) for 5 days by intraperitoneal injection. The results showed that AAI dose-dependently increased blood urea nitrogen (BUN) and serum creatinine (Scr) levels and renal pathological damage. Non-targeted metabolomics revealed that differences in serum metabolite profiles from controls increased with increasing AAI doses. Compared with the control group, 56 differentially expressed metabolites (DEMs) that could be affected by all 3 doses of AAI were obtained. We further identified 13 DEMs whose abundance significantly correlated with Scr and BUN levels and had good predictive values for diagnosing AAI exposure. Among the 13 DEMs, lipids and lipid-like molecules constituted the majority. Western blotting found that AAI suppressed renal fatty acid oxidation (FAO)-related enzymes expression. In conclusion, these findings provided evidence for developing biomarkers for monitoring AAs exposure and AAN diagnosis and indicated activation of FAO as a potential direction for the treatment of AAN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2024.08.001 | DOI Listing |
J Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.
View Article and Find Full Text PDFKidney360
December 2024
Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA.
Background: Chronic kidney disease (CKD) counts acute kidney injuries (AKI) as one of its many underlying causes. Lymphatic vessels are important in modulating inflammation post-injury. Manipulating lymphatic vessel expansion thus has the potential to alter CKD progression.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
Tobacco () is a globally cultivated crop, with its quality closely associated with the color and chemical composition of cured tobacco leaves. In this experiment, the effects of spraying exogenous 2, 4-epibrassinolide (EBR) and melatonin (MT) on the development of tobacco leaves at maturity stage and the quality after curing were investigated. Both EBR and MT treatments significantly enhanced the appearance quality of tobacco leaves at the stem-drying stage.
View Article and Find Full Text PDFProtein Expr Purif
March 2025
Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France. Electronic address:
Bitter is one of the five basic taste qualities, along with salty, sour, sweet and umami, used by mammals to access the quality of their food and orient their eating behaviour. Bitter taste detection prevents the ingestion of food potentially contaminated by bitter-tasting toxins. Bitter taste perception is mediated by a family of G protein-coupled receptors (GPCRs) called TAS2Rs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!