Subsoil stores the majority of soil organic carbon (SOC), and plays a vital role in the global carbon cycle in terrestrial ecosystems and in regulating climate change. Response of SOC decomposition to temperature warming (TR) is a crucial parameter to predict SOC dynamics under global warming. However, it remains unknown how TR varies across the whole soil profile and responds to exogenous C and N inputs. To assess this, we designed a novel incubation system to measure SOC-derived CO efflux across the whole soil column (i.e., 60 cm length), allowing manual addition of C-labeled glucose and ammonium nitrate, and incubated it under ambient or warmed temperatures (+4 °C). We found that C addition significantly increased TR in 0-20 cm, 20-40 cm and 40-60 cm by 64.3 %, 68.1 % and 57.2 %, respectively. However, the combined addition of C and N decreased TR by 11.1 % - 15.3 % compared to without anything addition (CK) in the whole soil profile. The effect of N on TR ranged from -22.8 % to -40.4 % in the whole soil profile, and was significantly lower in topsoil than in subsoil. Furthermore, sole N addition significantly promoted TR compared to CK by 79.0 % and 94.7 % in 20-40 cm and 40-60 cm subsoil, only 9.8 % in 0-20 cm topsoil. These results together suggested that TR is sensitive to increasing C availability in the whole soil profile and increasing N availability in 20-60 cm subsoil. Random forest model indicated that soil enzyme activities (explained 21.3 % of the variance) and DOC (explained 11.1 % of the variance) dominantly governed TR in topsoil, but N availability displayed a predominant control of TR in subsoil. Overall, our results suggested that increased C and N availability under climate warming scenarios could further increase the risk of carbon loss especially in subsoil with substrate deficiency, but labile C (e.g., root exudation) input under climate warming and N enrichment could reduce SOC decomposition and benefit for C sequestration by decreasing TR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!