Global release of plastics exerts various impacts on the ecological cycle, particularly on primary photosynthesis, while the impacts of plastic additives are unknown. As a carrier of fluorescent brightener, plastic particles co-modify Chlorella pyrenoidosa (C. pyrenoidosa) growth and its photosynthetic parameters. In general, adding to the oxidative damage induced by polystyrene, fluorescent brightener-doped polystyrene produces stronger visible light and the amount of negative charge is more likely to cause photodamage in C. pyrenoidosa leading to higher energy dissipation through conditioning than in the control group with a date of ETR (II) inhibition rate of 33 %, Fv/Fm inhibition rate of 8.3 % and Pm inhibition rate of 48.8 %. To elucidate the ecological effect of fluorescent brightener doping in plastic particles, a machine learning method is performed to establish a Gradient Boosting Machine model for predicting the impact of environmental factors on algal growth. Upon validation, the model achieved an average fitting degree of 88 %. Relative concentration of plastic particles and algae claimed the most significant factor by interpretability analysis of the machine learning. Additionally, both Gradient Boosting Machine prediction and experimental results indicate a matching result that plastic additives have an inhibitive effect on algal growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135406 | DOI Listing |
Chem Pharm Bull (Tokyo)
December 2024
School of Traditional Chinese Medicines, Shenyang Pharmaceutical University.
Enteric-coated microcapsules can protect roxithromycin (ROX) from acid hydrolysis enhancing efficacy, solubility, and dissolution rate, representing a promising oral formulation for children and patients with swallowing difficulties. ROX-layered core particles were obtained with polyvinylpyrrolidone (PVP) K30 as the binder and Eudragit L30 D-55 as the coating material using the Wurster process in a fluidized bed processor. The enteric-coated microcapsules were characterized using powder X-ray diffraction, differential scanning calorimetry, and polarized optical microscopy.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 10083, China.
Nanoplastic particles (NPPs) have attracted lots of attention due to their toxicity. In this study, a Surface-enhanced Raman scattering (SERS)-based category on selectivity and quantification detecting the polystyrene (PS) NPPs has been presented. Firstly, the size-dependent SERS relationship between the diameter of Ag nanocavities (AgNCAs) and the diameter of the PS NPPs is studied.
View Article and Find Full Text PDFSci Total Environ
December 2024
Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry, IQUIBICEN, University of Buenos Aires and CONICET, CABA, Argentina.
Microplastics (MPs) are in some ways the expected product of man-made plastics that are considered as a pollutant ubiquitous in the environment. This is particularly notorious in continental waters, along coastlines, and especially in the North Pacific Gyre, sometimes called the Pacific Garbage Patch. Even now, there is growing concern that MPs can harm wildlife, enter the food chain, and end up in the human body.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Marine College, Shandong University, Weihai, Shandong 264209, China. Electronic address:
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China.
Microorganisms change the properties of microplastics, at the same time, microplastics can also affect the distribution of microorganisms. To investigate this issue, we chose to study Jianhu Lake, a plateau lake in southwestern China, by collecting data at three sampling locations. The microplastics and bacterial communities in the sediment columns of Jianhu Lake were sampled within a 0 to 60 cm profile, and the basic characteristics of microplastic abundance, shape, color, size, and polymer type were determined accordingly, via their collection, separation, extraction, and identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!