Whatever does not kill them makes them stronger: Using quaternary ammonia antimicrobials to alleviate the inhibition of ammonia oxidation under perfluorooctanoic acid stress.

Water Res

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.

Published: October 2024

Perfluorooctanoic acid (PFOA), benzalkyl dimethylammonium compounds (BAC) and antibiotic resistance genes (ARGs) have negative effects on biological sewage treatment. The performance of nitrification systems under stress of PFOA (0.1-5 mg/L) or/and BAC (0.2-10 mg/L) was explored during 84-day experiments using four sequencing batch reactors, in this study. Low (0.1 mg/L) concentration PFOA had a positive influence on ammonia removal, while medium and high (2 and 5 mg/L) concentrations PFOA caused severe inhibition. Meanwhile, PFOA stress resulted in the enrichment of ARGs in water (w-ARGs). BAC (0-10 mg/L) had no obvious influence on ammonia removal. However, BAC promoted the reduction of ARGs and the bacterial community was the main participator (48.07%) for the spread of ARGs. Interestingly, the joint stress of PFOA and BAC increased the ammonia-oxidizing bacteria (AOB) activity from 5.81 ± 0.19 and 6.05 ± 0.79 mg N/(g MLSS·h) to 7.09 ± 0.87 and 7.23 ± 0.29 mg N/(g MLSS·h) in medium and high concentrations, compared to single stress of PFOA, which was observed for the first time. BAC could reduce bioavailability of PFOA through competitive adsorption and decreasing sludge hydrophobicity by the lower β-Sheet and α-Helix in tightly bound protein. Furthermore, the joint stress of PFOA and BAC was able to intensify the proliferation of w-ARGs and extracellular ARGs in sludge, and developed the most active horizontal gene transfer mediated by intl1 compared to single stress of PFOA or BAC. The batch tests verified the detoxification capacity of BAC on nitrification under 2.5 mg/L PFOA (48 h exposing), and the maximum alleviation of AOB activity was achieved at BAC and PFOA mass ratio of 2:1. In summary, BAC could be used to alleviate the inhibition of PFOA on ammonia oxidation, providing an efficient and sustainable approach in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122171DOI Listing

Publication Analysis

Top Keywords

stress pfoa
20
pfoa
13
pfoa bac
12
bac
11
alleviate inhibition
8
ammonia oxidation
8
perfluorooctanoic acid
8
influence ammonia
8
ammonia removal
8
medium high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!