This study aimed to explore the regulatory effect of remifentanil-mediated mitochondrial autophagy on osteoclast formation and further investigate its mechanism. Macrophage cell line RAW264.7 was taken and induced to differentiate into mature osteoclasts using nuclear factor kB receptor activating factor ligand (RANKL). The cell model was treated with different concentrations of remifentanil or down-regulated expression of mitochondrial autophagy-related gene PINK1. The survival, death and ROS production of osteoclasts were detected by CCK8 kit and flow cytometry, MMP level was detected by JC-1 method, mitochondrial morphology and autophagy were observed by transmission electron microscopy, and mitochondrial autophagy-related protein expression was detected by Western blot. The number of osteoclasts in the remifentanil-treated group was significantly reduced compared to the control group, accompanied by a reduction in reactive oxygen species (ROS) and mitochondrial membrane potential levels (MMP). Further results showed that remifentanil could significantly up-regulate the activity of PINK1/Parkin pathway, promote the occurrence of mitochondrial autophagy, and damaged mitochondria, and inhibit the formation of osteoclasts. Remifentanil successfully inhibited osteoclast formation by regulating mitochondrial autophagy mediated by PINK1/Parkin pathway. The results of this study revealed that remifentanil plays an important role in the physiology and pathology of osteoclasts, which may provide new ideas and strategies for the clinical treatment of remifentanil in tibial fractures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14715/cmb/2024.70.7.27 | DOI Listing |
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China.
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper.
View Article and Find Full Text PDFActa Biomater
January 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:
Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!