AI Article Synopsis

  • Breast cancer is a leading cause of cancer-related deaths among women globally, and the XRCC2 gene, which is critical for DNA repair, may influence breast cancer risk.
  • Conducted at Zheen International Hospital in Erbil, Iraq, the study analyzed 88 samples, including paired normal and cancer tissues, using advanced techniques like Next-Generation Sequencing and RT-PCR.
  • The findings identified seven inherited variants in the XRCC2 gene, with one likely pathogenic mutation, increased gene expression in tumor tissues, and low DNA methylation rates, suggesting that XRCC2 could serve as a biomarker for breast cancer.

Article Abstract

One of the main causes of cancer-related mortality for women worldwide is breast cancer (BC). The XRCC2 gene, essential for DNA repair, has been implicated in cancer susceptibility. This study aims to evaluate the association between XRCC2 and BC risk. The study was conducted at Zheen International Hospital in Erbil, Iraq, between 2021 and 2024 with a total of 88 samples, including 44 paired normal and cancer tissue samples. Mutation analysis was performed using Next-Generation Sequencing, coupled with in silico tools for variant impact prediction. Expression levels were assessed through RT-PCR, and methylation status was determined using methylation-sensitive restriction enzyme digestion PCR. The study identified seven inherited germline variants in the XRCC2 gene, with five of these mutations being Uncertain Significance, one being Likely Pathogenic, and one being Likely benign. RNA purity was found high with mean A260/280 ratios of 1.986 ± 0.097 in normal (N) and 1.963 ± 0.092 in tumor (T) samples. Tumor samples exhibited a higher RNA concentration (78.56 ± 40.87 ng/µL) than normal samples (71.44 ± 40.79 ng/µL). XRCC2 gene expression was significantly upregulated in tumor tissue, with marked increases in patients aged 40-55 and >56 years and in higher cancer grades (II and III) and invasive ductal carcinoma (p-values ranging from <0.0001 to 0.0392). DNA methylation rates in tumor tissues were low (7%), suggesting limited regulation by methylation. The study suggests that XRCC2 can be classified as an oncogene and that its structural investigation by targeted NGS and expression evaluation can be used as a potential biomarker in BC.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2024.70.7.36DOI Listing

Publication Analysis

Top Keywords

xrcc2 gene
12
association xrcc2
8
breast cancer
8
tumor samples
8
cancer
5
samples
5
xrcc2 breast
4
cancer multi-omics
4
multi-omics analysis
4
analysis genomic
4

Similar Publications

Background: Systemic chemotherapy constitutes an indispensable component of breast cancer (BC) management, where therapeutic drug combinations such as anthracyclines, platinum compounds, and taxanes form the cornerstone of standard treatment protocols. Although DNA repair genes are pivotal in cancer susceptibility, their specific roles in mediating acute or chronic toxicity outcomes induced by chemotherapy remain undetermined. Consequently, this study was planned  to elucidate the impact of polymorphisms in base excision repair (BER) genes, including XRCC1, XRCC2, XRCC3, APE1, and hOGG1, on treatment response and toxicity outcomes in BC patients undergoing paclitaxel and doxorubicin-based chemotherapy within an Indian population.

View Article and Find Full Text PDF

Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.

View Article and Find Full Text PDF

IL-6 Exacerbates Oxidative Damage of RPE Cells by Indirectly Destabilizing the mRNA of DNA Repair Genes.

Inflammation

November 2024

Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China.

Chronic inflammation has been associated with the progression of age-related macular degeneration (AMD) and diabetic retinopathy (DR), and the levels of various inflammatory factors are significantly increased in intraocular fluids of patients with AMD and DR. Therefore, elucidating the roles of inflammatory factors in the oxidative damage of RPE cells will help uncover the pathogenesis of AMD and DR. We have previously demonstrated that E2F1 plays an important role in the antioxidant capacity of RPE cells.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has expanded the concept of "FA signaling" to include over 30 proteins involved in DNA Damage Response (DDR), making it the largest cellular defense network against DNA damage.
  • Different human cancers display unique mutational profiles related to DDR/FA signaling, with ATM and BRCA2 being major players across many cancer types, while genes like FANCT predominate in breast and liver cancers.
  • Understanding these mutation patterns is crucial, as they greatly influence patient survival and treatment outcomes, potentially guiding more effective therapeutic strategies for various cancers.
View Article and Find Full Text PDF

The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!