Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) and electrodeless conductivity tensor imaging (CTI) are two emerging modalities that can quantify low-frequency tissue anisotropic conductivity properties by assuming similar properties underlie ionic mobility and water diffusion. While both methods have potential applications to estimating neuro-modulation fields or formulating forward models used for electrical source imaging, a direct comparison of the two modalities has not yet been performed in-vitro or in-vivo. Therefore, the aim of this study was to test the equivalence of these two modalities. We scanned a tissue phantom and the head of human subject using DT-MREIT and CTI protocols and reconstructed conductivity tensor and effective low frequency conductivities. We found both gray and white matter conductivities recovered by each technique were equivalent within 0.05 S/m. Both DT-MREIT and CTI require multiple processing steps, and we further assess the effects of each factor on reconstructions and evaluate the extent to which different measurement mechanisms potentially cause discrepancies between the two methods. Finally, we discuss the implications for spectral models of measuring conductivity using these techniques. The study further establishes the credibility of CTI as an electrodeless non-invasive method of measuring low frequency conductivity properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297941 | PMC |
http://dx.doi.org/10.1038/s41598-024-68551-z | DOI Listing |
Front Vet Sci
January 2025
Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). Because the diagnosis of IE is largely based on the exclusion of other diseases, it would be beneficial to indicate an IE biomarker to better understand, diagnose, and treat this disease.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).
Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.
Hum Brain Mapp
February 2025
Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Objective: To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain.
Materials And Methods: A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers.
Neurobiol Lang (Camb)
January 2025
Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, CT, USA.
Research over the past two decades has documented the importance of sleep to language learning. Sleep has been suggested to play a role in establishing new speech representations as well; however, the neural mechanisms corresponding to sleep-mediated effects on speech perception behavior are unknown. In this study, we trained monolingual English-speaking adults to perceive differences between the Hindi dental vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!