Deep optical optimization has recently emerged as a new paradigm for designing computational imaging systems using only the output image as the objective. However, it has been limited to either simple optical systems consisting of a single element such as a diffractive optical element or metalens, or the fine-tuning of compound lenses from good initial designs. Here we present a DeepLens design method based on curriculum learning, which is able to learn optical designs of compound lenses ab initio from randomly initialized surfaces without human intervention, therefore overcoming the need for a good initial design. We demonstrate the effectiveness of our approach by fully automatically designing both classical imaging lenses and a large field-of-view extended depth-of-field computational lens in a cellphone-style form factor, with highly aspheric surfaces and a short back focal length.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297943PMC
http://dx.doi.org/10.1038/s41467-024-50835-7DOI Listing

Publication Analysis

Top Keywords

curriculum learning
8
compound lenses
8
good initial
8
learning initio
4
initio deep
4
deep learned
4
learned refractive
4
refractive optics
4
optics deep
4
optical
4

Similar Publications

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

Pseudolabel guided pixels contrast for domain adaptive semantic segmentation.

Sci Rep

December 2024

The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.

Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!