Single-cell analysis across multiple samples and conditions requires quantitative modeling of the interplay between the continuum of cell states and the technical and biological sources of sample-to-sample variability. We introduce GEDI, a generative model that identifies latent space variations in multi-sample, multi-condition single-cell datasets and attributes them to sample-level covariates. GEDI enables cross-sample cell state mapping on par with state-of-the-art integration methods, cluster-free differential gene expression analysis along the continuum of cell states, and machine learning-based prediction of sample characteristics from single-cell data. GEDI can also incorporate gene-level prior knowledge to infer pathway and regulatory network activities in single cells. Finally, GEDI extends all these concepts to previously unexplored modalities that require joint consideration of dual measurements, such as the joint analysis of exon inclusion/exclusion reads to model alternative cassette exon splicing, or spliced/unspliced reads to model the mRNA stability landscapes of single cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298001PMC
http://dx.doi.org/10.1038/s41467-024-50963-0DOI Listing

Publication Analysis

Top Keywords

multi-sample multi-condition
8
multi-condition single-cell
8
single-cell data
8
continuum cell
8
cell states
8
single cells
8
reads model
8
unified model
4
model interpretable
4
interpretable latent
4

Similar Publications

In the past two decades, genomics has advanced significantly, with single-cell RNA-sequencing (scRNA-seq) marking a pivotal milestone. ScRNA-seq provides unparalleled insights into cellular diversity and has spurred diverse studies across multiple conditions and samples, resulting in an influx of complex multidimensional genomics data. This highlights the need for robust methodologies capable of handling the complexity and multidimensionality of such genomics data.

View Article and Find Full Text PDF

Single-cell analysis across multiple samples and conditions requires quantitative modeling of the interplay between the continuum of cell states and the technical and biological sources of sample-to-sample variability. We introduce GEDI, a generative model that identifies latent space variations in multi-sample, multi-condition single-cell datasets and attributes them to sample-level covariates. GEDI enables cross-sample cell state mapping on par with state-of-the-art integration methods, cluster-free differential gene expression analysis along the continuum of cell states, and machine learning-based prediction of sample characteristics from single-cell data.

View Article and Find Full Text PDF

STACCato: Supervised Tensor Analysis tool for studying Cell-cell Communication using scRNA-seq data across multiple samples and conditions.

bioRxiv

December 2023

Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America.

Research on cell-cell communication (CCC) is crucial for understanding biology and diseases. Many existing CCC inference tools neglect potential confounders, such as batch and demographic variables, when analyzing multi-sample, multi-condition scRNA-seq datasets. To address this significant gap, we introduce STACCato, a upervised ensor nalysis tool for studying ell-cell ommunication, that identifies CCC events and estimates the effects of biological conditions (e.

View Article and Find Full Text PDF

The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allows researchers to investigate different cell states. The effective integration of multiple large-cohort studies promises biological insights into cells under different conditions that individual studies cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of atlas-scale multi-sample multi-condition single-cell studies.

View Article and Find Full Text PDF

scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing.

BMC Genomics

May 2023

Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA.

Background: Single-cell RNA sequencing is a state-of-the-art technology to understand gene expression in complex tissues. With the growing amount of data being generated, the standardization and automation of data analysis are critical to generating hypotheses and discovering biological insights.

Results: Here, we present scRNASequest, a semi-automated single-cell RNA-seq (scRNA-seq) data analysis workflow which allows (1) preprocessing from raw UMI count data, (2) harmonization by one or multiple methods, (3) reference-dataset-based cell type label transfer and embedding projection, (4) multi-sample, multi-condition single-cell level differential gene expression analysis, and (5) seamless integration with cellxgene VIP for visualization and with CellDepot for data hosting and sharing by generating compatible h5ad files.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!