Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionq79i0m1vudlgfnmv84g8tfu6lnb4mtfl): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel and sensitive fluorescence ratiometric method is developed for urea detection based on the pH-sensitive response of two fluorescent carbon dot (CD) systems: R-CDs/methyl red (MR) and NIR-CDs/Cu. The sensing mechanism involves breaking down urea using the enzyme urease, releasing ammonia and increasing pH. At higher pH, the fluorescence of NIR-CDs is quenched due to the enhanced interaction with Cu, while the fluorescence of R-CDs is restored as the acidic MR converts to its basic form, removing the inner filter effect. The ratiometric signal (F/F) of the R-CDs/MR and NIR-CDs/Cu intensities changed in response to the pH induced by urea hydrolysis, enabling selective and sensitive urea detection. Detailed spectroscopic and morphological investigations confirmed the fluorescence probe design and elucidated the sensing mechanism. The method exhibited excellent sensitivity (0.00028 mM LOD) and linearity range (0.001 - 8.0 mM) for urea detection, with successful application in milk samples for monitoring adulteration, demonstrating negligible interference and high recovery levels (96.5% to 101.0%). This ratiometric fluorescence approach offers a robust strategy for selective urea sensing in complicated matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06573-0 | DOI Listing |
Chemistry
December 2024
IISER Pune, Chemistry, IISER PUNE , HOMIBHABA ROAD, NCL COLONY, 411008, PUNE, INDIA.
The efficient removal of 99TcO4- from alkaline nuclear waste is vital for optimizing nuclear waste management and safeguarding the environment. However, current state-of-the-art sorbent materials are constrained by their inability to simultaneously achieve high alkali resistance, rapid adsorption kinetics, large adsorption capacity, and selectivity. In this study, we synthesized a urea-rich cationic porous organic polymer, IPM-403, which demonstrates exceptional chemical stability, ultrafast kinetics (~92% removal within 30 seconds), high adsorption capacity (664 mg/g), excellent selectivity, along with multiple-cycle recyclability (up to 7 cycles), making it highly promising for the removal of ReO4- (surrogate of 99TcO4-) from nuclear wastewater.
View Article and Find Full Text PDFArch Toxicol
December 2024
Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
This study investigates whether 17β-estradiol (E2), a natural estrogen and one of the endocrine-disrupting chemicals responsible for water pollution, can be oxidatively decomposed under simulated solar light using a composite of tin oxide nanoparticles and graphene-like carbon nitride (g-CN) as a photocatalyst. The composite photocatalyst was prepared by heating a mixture of urea and tin acetate. FT-IR measurements revealed that g-CN possesses structural units similar to g-CN, a well-studied graphite-like carbon nitride.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, China.
Background: Fibrosis is key in the development and progression of diabetic kidney disease (DKD). Baicalin (BA), wogonin (WGN), and wogonoside (WGS) have renoprotective effects. The mechanism of alleviation of DKD progression, by improving renal fibrosis, is unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. Electronic address:
With the urge to reduce the use of petroleum-based materials, the aim of this work is to valorize biowaste to develop smart films through a sustainable fabrication way. In this regard, choline chloride/urea (1:2) deep eutectic solvent (DES) at different concentrations (25, 40, 50 and 75 wt%) was used to dissolve cow horn, used as reinforcement agent in soy protein films. The film fabrication was carried out by compression molding, a fast and cost-effective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!