Purpose: Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks.
Methods: We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics).
Results: Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data.
Discussion: The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561138 | PMC |
http://dx.doi.org/10.1007/s10439-024-03594-x | DOI Listing |
Biol Open
December 2024
Department of Kinesiology, Hungarian University of Sports Sciences, Alkotás utca 44-48, Budapest 1123, Hungary.
Knee joint position influences ankle torque, but it is unclear whether the soleus compensates to counteract the reductions in gastrocnemius output during knee-flexed versus knee-extended plantarflexions. Therefore, the purpose of this study was to determine the effects of knee joint position and plantarflexion contraction velocity on ankle plantarflexion torque and electromyography activity of the medial gastrocnemius and soleus in healthy young adults. Healthy male participants (n=30) performed concentric plantar flexions in a custom-built dynamometer from 15° dorsiflexion to 30° plantarflexion at gradually increasing velocities during each contraction at 30, 60, 120, 180, and 210° s-1 in a supine position with the knee fully extended and while kneeling with the knee fixed in 90° flexion.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
January 2025
Blue Cross of Western Pennsylvania Professor and Chief Sports Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Acta Orthop
January 2025
Clinical Orthopaedic Research Hvidovre, Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
Background And Purpose: In contemporary medial unicompartmental knee arthroplasty (mUKA), non-lateral patellofemoral osteoarthritis (PFOA) is not considered a contraindication. However, we still lack knowledge on the association of PFOA severity on patient reported outcome measures (PROMs) after mUKA. We aimed to examine the association between PFOA severity and PROM-score changes after mUKA.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2025
Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK.
Subject-specific finite element models of knee joint contact mechanics are used in assessment of interventions and disease states. Cartilage thickness distribution is one factor influencing the distribution of pressure. Precision of cartilage geometry capture varies between imaging protocols.
View Article and Find Full Text PDFPurpose: Double-level osteotomies (DLOs) have shown promising results for knee joint preservation, however, most ultimately progress in terms of degenerative disease resulting in conversion to total knee arthroplasty (TKA). Therefore, the purpose of this study was to examine the time to TKA conversion, long-term clinical outcomes and revision rates of patients who have undergone TKA after prior ipsilateral DLO.
Methods: Patients who underwent simultaneous or staged DLO and subsequently underwent conversion to TKA at a single academic institution from 1997 to 2022 were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!