Objective: To study the molecular basis for a proband with A subtype B of the ABO blood group and explore the influence of amino acid variant on the activity of glycosyltransferase (GT).
Methods: A proband who had presented at the First Affiliated Hospital of Zhengzhou University on July 2, 2020 was selected as the study subject. Serological identification of the ABO blood groups of the proband and her family members were performed by gel card and test tube methods. The ABO gene of the proband was identified by PCR-sequence specific primers (PCR-SSP) and DNA sequencing. A 3D molecular homologous model was constructed to predict the impact of the variant on the stability of α-(1→3)-D-N-acetylgalactosamine transferase (GTA).
Results: The red blood cells of the proband, her mother and two younger brothers showed weak agglutination with anti-A and strong agglutination with anti-B. The sera showed 1~2+ agglutination with Ac and no agglutination with Bc. Based on the serological characteristics, the proband was identified as AwB subtype. Pedigree analysis suggested that the variant was inherited from her mother. The blood group of the proband was identified as A223B type by PCR-SSP. ABO gene sequencing analysis showed that the proband has harbored heterozygous variants of c.297A>G, c.467C>T, c.526C>G, c.657C>T, c.703G>A, c.796C>A, c.803G>C, c.930G>A and c.1055insA. Based on the results of clone sequencing, it was speculated that the genotype was ABO*A223/ABO*B.01. There were c.467C>T and c.1055insA variants compared with ABO*A1.01, and c.1055insA variant compared with ABO*A1.02. Homologous modeling showed that the C-terminal of A223 GT was significantly prolonged, and the local amino acids and hydrogen bond network have changed.
Conclusion: Above results revealed the molecular genetics mechanism of A223B subtype. The c.1055insA variant carried by the proband may affect the enzymatic activity of GTA and ultimately lead to weakening of A antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.cn511374-20230618-00369 | DOI Listing |
Ann Hematol
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Analyze the clinical phenotype and gene mutations of a family with hereditary FXII deficiency, and preliminarily explore its phenotypic manifestations. The routine coagulation indicators and related coagulation factors were measured.Thromboelastography and thrombin generation tests simulated coagulation and anticoagulation states in vitro and in vivo.
View Article and Find Full Text PDFClin Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.
An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy type 1 (FSHD1) and Becker muscular dystrophy (BMD) are distinct disorders caused by different genetic variations and exhibiting different inheritance patterns. The co-occurrence of both conditions within the same family is rare. In this case report, the proband was a 10 year-old boy who presented with eye and mouth orbicular muscles, shoulder and proximal upper and lower limbs weakness.
View Article and Find Full Text PDFData Brief
February 2025
Department of Child Health, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta 10430, Indonesia.
Glycogen storage disease type IV (GSD IV) is a rare disease caused by a defect in glycogen branching enzyme 1 (GBE1), which played a crucial role in glycogen branching. GSD IV occurs once in approximately 1 in every 760,000 to 960,000 live births and is inherited in an autosomal recessive pattern. Early diagnosis of GSD IV is challenging due to non-specific symptoms, such as liver and spleen enlargement, which can overlap with other hematologic and hepatobiliary disorders.
View Article and Find Full Text PDFSci Rep
January 2025
Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 318 Bayi Avenue, Nanchang, 330006, China.
To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!