Bacterial surface display of PETase mutants and MHETase for an efficient dual-enzyme cascade catalysis.

Bioresour Technol

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, PR China. Electronic address:

Published: September 2024

Biological degradation of PET plastic holds great potential for plastic recycling. However, the high costs associated with preparing free enzymes for degrading PET make it unfeasible for industrial applications. Hence, we developed various cell catalysts by surface-displaying PETase mutants and MHETase using autotransporters in E. coli and P. putida. The efficiency of surface display was enhanced through modifying the host, co-expressing molecular chaperones, and evoluting the autotransporter. In strain EC9F, PET degradation rate was boosted to 3.85 mM/d, 51-fold and 23-fold increase compared to free enzyme and initial strain ED1, respectively. The reusability of cell catalyst EC9F was demonstrated with over 38 % and 30 % of its initial activity retained after 22 cycles of BHET degradation and 3 cycles of PET degradation. The highest reported PET degradation rate of 4.95 mM/d was achieved by the dual-enzyme cascade catalytic system EC9F+EM2+R, a mixture of cell catalyst EC9F and EM2 with surfactant rhamnolipid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131177DOI Listing

Publication Analysis

Top Keywords

pet degradation
12
surface display
8
petase mutants
8
mutants mhetase
8
dual-enzyme cascade
8
degradation rate
8
cell catalyst
8
catalyst ec9f
8
degradation
5
pet
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!