Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most of the plants using epizoochory show adaptations to this diaspore dispersal strategy by having the diaspores covered by barbs, hooks, spines or viscid outgrowths, which allow diaspores to easily attach to an animal surface. Many previous studies have been mainly focused on the dispersal distances and efficiency, or effectiveness of diverse attachment structures depending on their size, anatomy, and morphology. However, the knowledge about the mechanical properties of these structures remains rather poor. In this study, we use a combination of scanning electron microscopy, energy dispersive X-ray element analysis and nanoindentation, to examine the microstructure, biomineralization and mechanical properties of single hooks in Arctium minus, Cynoglossum officinale and Galium aparine. Both the biomineralization and mechanical properties of the hooks strongly differ in examined plant species; mechanical properties depend on the biomineralization pattern, such as the accumulation of silicon and calcium. Elastic modulus and hardness decrease in the series C. officinaleG. aparineA. minus. Anisotropic mechanical properties are found between the radial and longitudinal directions in each single hook. By characterizing the mechanical properties and biomineralization of plant hooks, this paper contributes to the understanding of attachment biomechanics related to seed dispersal. STATEMENT OF SIGNIFICANCE: The dispersal of seeds is essential for plant survival. Many of the plants that use the outside surface of animals to transport the seeds show adaptations to this dispersal strategy by having the seeds covered with hooks. Although these hooks have various sizes, morphologies and anatomical structures, all of them provide mechanical interlocking to animal surfaces. To reduce the risk of interlocking failure, the hooks are usually reinforced by mineralization. However, the relationship between mineralization, mechanical properties and specialized function of plant hooks has been largely overlooked. Here we perform a characterization study on the hooks of three plant species. Our results deepen the current understanding of the mineralization-material-function relationship in specialized hooks of plant seeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.07.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!