OsCOPT7 is involved in copper accumulation and transport through xylem.

J Hazard Mater

Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China. Electronic address:

Published: September 2024

Copper (Cu) is an essential micronutrient for humans, but excessive Cu in rice grains causes health risks. Currently, the mechanisms underlying Cu accumulation in rice are unclear. Here, we identified a novel member of the high-affinity copper transporter (Ctr)-like (COPT) protein family in rice, OsCOPT7, which controls Cu accumulation in rice grains. Mutation in the coding sequence of OsCOPT7 (mutant lc1) leads to inhibition of Cu transport through the xylem, contributing to lower Cu concentrations in the grain of lc1. Knockout or modulation of the expression of OsCOPT7 significantly impacts Cu transportation in the xylem and its accumulation in rice grains. OsCOPT7 localizes at the multi-pass membrane in the cell and the gene is expressed in the exodermis and stele cells, facilitating Cu loading into the xylem. OsCOPT7 expression is upregulated under Cu deficiency and in various organs, implying its contribution to Cu distribution within the rice plant. The variable expression pattern of OsCOPT7 suggests that OsCOPT7 expression responds to Cu stress in rice. Moreover, assays reveal that OsCOPT7 expression level is suppressed by the SQUAMOSA promoter-binding protein-like 9 (OsSPL9) and that OsCOPT7 interacts with Antioxidant Protein1 (OsATX1). This study elucidates the involvement of OsCOPT7 in Cu loading into the xylem, its subsequent distribution within the rice plant, and the potential of this protein in reducing the risk of high Cu concentrations in rice grain grown on Cu-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135245DOI Listing

Publication Analysis

Top Keywords

rice grains
12
accumulation rice
12
oscopt7 expression
12
oscopt7
11
rice
9
transport xylem
8
loading xylem
8
distribution rice
8
rice plant
8
xylem
5

Similar Publications

Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.

View Article and Find Full Text PDF

Diversity and functional traits based indigenous rhizosphere associated phosphate solubilizing bacteria for sustainable production of rice.

Front Microbiol

December 2024

Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.

Introduction: Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice.

View Article and Find Full Text PDF

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!