Background: Heat-related mortality has become a growing public health concern in light of climate change. However, few studies have quantified the climate-attributable health burden in Cyprus, a recognized climate change hotspot. This study aims to estimate the heat-related mortality in Cyprus for all future decades in the 21st century under moderate (SSP2-4.5) and extreme (SSP5-8.5) climate scenarios.
Methods: We applied distributed lag non-linear models to estimate the baseline associations between temperature and mortality from 2004 to 2019 (data obtained from Department of Meteorology of the Ministry of Agriculture, Rural Development and Environment and the Health Monitoring Unit of the Cyprus Ministry of Health). The relationships were then extrapolated to future daily mean temperatures derived from downscaled global climate projections from General Circulation Models. Attributable number of deaths were calculated to determine the excess heat-related health burden compared to the baseline decade of 2000-2009 in the additive scale. The analysis process was repeated for all-cause, cardiovascular, and respiratory mortality and mortality among males, females, and adults younger or older than 65. We assumed a static population and demographic structure, no adaptation to hot temperatures over time, and did not evaluate potential interaction between temperature and humidity.
Results: Compared to 2000-2009, heat-related total mortality is projected to increase by 2.7% (95% empirical confidence interval: 0.6, 4.0) and 4.75% (2.2, 7.1) by the end of the century in the moderate and extreme climate scenarios, respectively. Cardiovascular disease is expected to be an important cause of heat-related death with projected increases of 3.4% (0.7, 5.1) and 6% (2.6, 9.0) by the end of the century. Reducing carbon emission to the moderate scenario can help avoid 75% of the predicted increase in all-cause heat-related mortality by the end of the century relative to the extreme scenario.
Conclusions: Our findings suggest that climate change mitigation and sustainable adaptation strategies are crucial to reduce the anticipated heat-attributable health burden, particularly in Cyprus, where adaptation strategies such as air conditioning is nearing capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijheh.2024.114439 | DOI Listing |
Carbon Balance Manag
January 2025
North Carolina State University, Raleigh, NC, USA.
Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia.
Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
The increased levels of carbon dioxide (CO) emissions due to the combustion of fossil fuels and the consequential impact on global climate change have made CO capture, storage, and utilization a significant area of focus for current research. In most electrochemical CO applications, water is used as a proton donor due to its high availability and mobility and use as a polar solvent. Additionally, supercritical CO is a promising avenue for electrochemical applications due to its unique chemical and physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!