Multiplexed ultraviolet (UV) metaholograms, which are capable of displaying multiple holographic images from a single-layer device, are promising for enhancing tamper resistance and functioning as optical encryption devices. Despite considerable interest in optical security, the commercialization of UV metaholograms encounters obstacles, such as high-resolution patterning and material choices. Here, we realize spin-multiplexed UV metaholograms using a high-throughput printable platform that incorporates a zirconium dioxide (ZrO) particle-embedded resin (PER). Utilizing ZrO PER, which is transparent and exhibits a refractive index of approximately 1.8 at 320 nm, we fabricated a single device capable of encoding dual holographic information depending on polarization states is fabricated. We demonstrate UV metaholograms achieving efficiencies of 56.23% with left circularly polarized incident beams and 57.28% with right circularly polarized incident beams. These multiplexed UV metaholograms fabricated using a one-step platform enable real-world applications in anticounterfeiting and encryption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c06280DOI Listing

Publication Analysis

Top Keywords

circularly polarized
8
polarized incident
8
incident beams
8
metaholograms
5
printable spin-multiplexed
4
spin-multiplexed metasurfaces
4
metasurfaces ultraviolet
4
ultraviolet holographic
4
holographic displays
4
displays multiplexed
4

Similar Publications

Raman, ROA, and luminescence spectra of chiral lanthanide complexes with L- and D-alanine.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland. Electronic address:

The Raman spectra of lanthanide [Ln(HO)(Ala)](ClO) crystals were measured with 488, 532, 633, and 1064 nm laser lines, and ROA of complexes in water were collected using 532 nm excitation. As in IR and VCD, ν(CO) stretching and β(OCO) bending vibration bands showed a tendency typical to the lanthanide contraction effect. However, in Raman, the effect is less pronounced than the IR spectrum because it is strongly perturbed by lanthanide ion luminescence, which comes from the 4f → 4f transitions.

View Article and Find Full Text PDF

We demonstrate a simple, low-cost, and ultracompact chiral resonant metasurface design, which, by strong local coupling to a quantum gain medium (quantum emitters), allows to implement an ultrathin metasurface laser, capable of generating tunable circularly polarized coherent lasing output. According to our detailed numerical investigations, the lasing emission can be transformed from linear to circular and switch from right- to left-handed circularly polarized (CP) not only by altering the metasurface chiral response but also by changing the polarization of a linearly polarized pump wave, thus enabling dynamic lasing-polarization control. Given the increasing interest for CP laser emission, our chiral metasurface laser design proves to be a versatile yet straightforward strategy to generate a strong and tailored CP emission laser, promising great potential for future applications in both photonics and materials science.

View Article and Find Full Text PDF

Nanophotonic-Enhanced Thermal Circular Dichroism for Chiral Sensing.

ACS Photonics

January 2025

Laboratory of Nanoscience for Energy Technologies (LNET), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland.

Circular dichroism (CD) can distinguish the handedness of the chiral molecules. However, it is typically very weak due to vanishing absorption at low molecular concentrations. Here, we suggest thermal CD (TCD) for chiral detection, leveraging the temperature difference in the chiral sample when subjected to right- and left-circularly polarized excitations.

View Article and Find Full Text PDF

Some one-dimensional (1D) crystals containing a screw dislocation along their longer axis exhibit a helical twist due to lattice strain. These chiral structures have been thoroughly investigated by using transmission electron microscopy. However, whether two-dimensional (2D) crystals with a spiral surface pattern, presumably containing a screw dislocation, are structurally chiral remains unclear because their internal structures are not visible.

View Article and Find Full Text PDF

Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz

January 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!