Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intestinal failure-associated liver disease (IFALD) is a serious complication of long-term parenteral nutrition in patients with short bowel syndrome (SBS), and is the main cause of death in SBS patients. Prevention of IFALD is one of the major challenges in the treatment of SBS. Impairment of intestinal barrier function is a key factor in triggering IFALD, therefore promoting intestinal repair is particularly important. Intestinal repair mainly relies on the function of intestinal stem cells (ISC), which require robust mitochondrial fatty acid oxidation (FAO) for self-renewal. Herein, we report that aberrant LGR5+ ISC function in IFALD may be attributed to impaired farnesoid X receptor (FXR) signaling, a transcriptional factor activated by steroids and bile acids. In both surgical biopsies and patient-derived organoids (PDOs), SBS patients with IFALD represented lower population of LGR5+ cells and decreased FXR expression. Moreover, treatment with T-βMCA in PDOs (an antagonist for FXR) dose-dependently reduced the population of LGR5+ cells and the proliferation rate of enterocytes, concomitant with decreased key genes involved in FAO including CPT1a. Interestingly, however, treatment with Tropifexor in PDOs (an agonist for FXR) only enhanced FAO capacity, without improvement in ISC function and enterocyte proliferation. In conclusion, these findings suggested that impaired FXR may accelerate the depletion of LGR5 + ISC population through disrupted FAO processes, which may serve as a new potential target of preventive interventions against IFALD for SBS patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202400827R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!