The synthesis of stable polynitrogen compounds with high-energy density has long been a major challenge. The cyclo-pentazolate anion (cyclo-N ) is successfully converted into aromatic and structurally symmetric bipentazole (N) via electrochemical synthesis using highly conductive multi-walled carbon nanotubes (MWCNTs) as the substrate and sodium pentazolate hydrate ([Na(HO)(N)]·2HO) as the raw material. Attenuated total refraction Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and density functional theory calculations confirmed the structure and homogeneous distribution of N in the sidewalls of the MWCNTs (named MWCNT-N10-n m). The MWCNT-N10-2.0 m is further used as a catalyst for electrochemical oxygen reduction to synthesize hydrogen peroxide from oxygen with a two-electron selectivity of up to 95%.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403615DOI Listing

Publication Analysis

Top Keywords

multi-walled carbon
8
carbon nanotubes
8
high-energy polynitrogen
4
polynitrogen stabilized
4
stabilized multi-walled
4
nanotubes synthesis
4
synthesis stable
4
stable polynitrogen
4
polynitrogen compounds
4
compounds high-energy
4

Similar Publications

Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane.

ACS Appl Polym Mater

December 2024

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode.

View Article and Find Full Text PDF

Enhanced Conductivity in Conjugated Microporous Polymers via Integrating of Carbon Nanotubes for Ultrasensitive NO Chemiresistive Sensor.

Small

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Conjugated microporous polymers (CMPs) present high promise for chemiresistive gas sensing owing to their inherent porosities, high surface areas, and tunable semiconducting properties. However, the poor conductivity hinders their widespread application in chemiresistive sensing. In this work, three typical CMPs (PSATA, PSATB, and PSATT) are synthesized and their chemiresistive gas sensing performance is investigated for the first time.

View Article and Find Full Text PDF

The ETS domain-containing hematopoietic transcription factor PU.1 mediates the induction of arachidonate 5-lipoxygenase by multi-walled carbon nanotubes in macrophages in vitro.

Arch Toxicol

December 2024

Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA.

Exposure to fibrogenic multi-walled carbon nanotubes (MWCNTs) induces the production of proinflammatory lipid mediators (LMs) in myeloid cells to instigate inflammation. The molecular underpinnings of LM production in nanotoxicity remain unclear. Here we report that PU.

View Article and Find Full Text PDF

Ambient Synthesis of Cyclohexanone Oxime via In Situ Produced Hydrogen Peroxide over Cobalt-Based Electrocatalyst.

Adv Sci (Weinh)

December 2024

Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.

Cyclohexanone oxime, a critical precursor for nylon-6 production, is traditionally synthesized via the hydroxylamine method under industrial harsh conditions. Here is present a one-step electrochemical integrated approach for the efficient production of cyclohexanone oxime under ambient conditions. This approach employed the coupling of in situ electro-synthesized HO over a cobalt (Co)-based electrocatalyst with the titanium silicate-1 (TS-1) heterogeneous catalyst to achieve the cyclohexanone ammoximation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!