Background: Biomass burning (BB) is a major source of air pollution and particulate matter (PM) in Southeast Asia. However, the health effects of PM smaller than 10 µm (PM10) originating from BB may differ from those of other sources. This study aimed to estimate the short-term association of PM10 from BB with respiratory and cardiovascular hospital admissions in Peninsular Malaysia, a region often exposed to BB events.

Methods: We obtained and analyzed daily data on hospital admissions, PM10 levels and BB days from five districts from 2005 to 2015. We identified BB days by evaluating the BB hotspots and backward wind trajectories. We estimated PM10 attributable to BB from the excess of the moving average of PM10 during days without BB hotspots. We fitted time-series quasi-Poisson regression models for each district and pooled them using meta-analyses. We adjusted for potential confounders and examined the lagged effects up to 3 days, and potential effect modification by age and sex.

Results: We analyzed 210 960 respiratory and 178 952 cardiovascular admissions. Almost 50% of days were identified as BB days, with a mean PM10 level of 53.1 µg/m3 during BB days and 40.1 µg/m3 during normal days. A 10 µg/m3 increment in PM10 from BB was associated with a 0.44% (95% CI: 0.06, 0.82%) increase in respiratory admissions at lag 0-1, with a stronger association in adults aged 15-64 years and females. We did not see any significant associations for cardiovascular admissions.

Conclusions: Our findings suggest that short-term exposure to PM10 from BB increased the risk of respiratory hospitalizations in Peninsular Malaysia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyae102DOI Listing

Publication Analysis

Top Keywords

hospital admissions
12
peninsular malaysia
12
pm10
9
biomass burning
8
respiratory cardiovascular
8
cardiovascular hospital
8
admissions peninsular
8
identified days
8
days
7
respiratory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!