Flagellar protein FliL: A many-splendored thing.

Mol Microbiol

Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA.

Published: October 2024

FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.15301DOI Listing

Publication Analysis

Top Keywords

flagellar protein
8
flil
4
protein flil
4
flil many-splendored
4
many-splendored thing
4
thing flil
4
flil bacterial
4
bacterial flagellar
4
protein demonstrated
4
demonstrated associate
4

Similar Publications

1700030J22RIK is essential for sperm flagellar function and male fertility in mice.

J Genet Genomics

December 2024

Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China; School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:

Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22RIK is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches.

View Article and Find Full Text PDF

Spatial, temporal and numerical regulation of polar flagella assembly in Pseudomonas putida.

Microbiol Res

December 2024

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain. Electronic address:

The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled.

View Article and Find Full Text PDF

Measuring Bacterial Flagellar Motor Dynamics via a Bead Assay.

Methods Mol Biol

December 2024

Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.

The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions.

View Article and Find Full Text PDF

Asthenoteratozoospermia is a common cause of male infertility. To further define the genetic causes underlying asthenoteratozoospermia, we performed whole-exome sequencing in a cohort of Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of MYCBPAP were first identified in two unrelated Chinese cases.

View Article and Find Full Text PDF

CerM and Its Antagonist CerN Are New Components of the Quorum Sensing System in Cereibacter sphaeroides, Signaling to the CckA/ChpT/CtrA System.

Microbiologyopen

December 2024

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Cereibacter sphaeroides has a quorum sensing (QS) system that has been partially characterized. Using a bioinformatic approach, six LuxR homologs and one homolog of the acylhomoserine lactone synthase were identified in this bacterium, including the previously characterized CerR and CerI proteins. This study focused on determining the roles of two LuxR homologs, CerM and CerN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!