Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development. This study investigated the impact of boosting the methanol dissimilation pathway, a branch of MUT that plays a vital role in detoxifying formaldehyde and providing energy in the form of NADH, in K. phaffi. This was achieved by integrating two orthologous genes from Hansenula polymorpha into the K. phaffi genome: formaldehyde dehydrogenase (HpFLD) and formate dehydrogenase (HpFMDH). The HpFLD and HpFMDH genes were isolated from the Hansenula polymorpha genome and inserted under the regulation of the pAOX1 promoter in the genome of recombinant K. phaffi that already contained a single copy of model protein genes (eGFP or EGII). The expression levels of these model proteins were assessed through protein activity assays and gene expression analysis. The findings revealed that while both orthologous genes positively influenced model protein production, HpFMDH exhibited a more pronounced upregulation in expression compared to HpFLD. Co-expression of both orthologous genes demonstrated synergistic effects, resulting in approximately a twofold increase in the levels of the model proteins detected. This study provides valuable insights into enhancing the production capacity of recombinant proteins in K. phaffi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296995 | PMC |
http://dx.doi.org/10.1186/s13568-024-01743-y | DOI Listing |
FEMS Yeast Res
January 2024
Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
Cervical cancer is the fourth most prevalent cancer among women globally, with Thai women ranking it as the third most common. At present, a prophylactic vaccine, containing virus-like particles (VLPs) of HPV L1 capsid protein, is widely recognized as one of the major prevention strategies for cervical cancer. Unfortunately, due to a low cross-protection among subtypes, protection against each HPV subtype requires vaccination with VLPs of that specific subtype.
View Article and Find Full Text PDFiScience
August 2024
Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
Peroxisomes are dynamic organelles with important metabolic functions. Yeast Pex3 is a multifunctional membrane protein aiding in peroxisomal biogenesis, inheritance, and degradation (pexophagy), by interacting with process-specific factors. Using multicolor (live-cell) stimulated emission depletion (STED) nanoscopy, we studied the localization of Pex3 and its binding partners in Unlike confocal microscopy, STED allows resolving the membrane of tiny peroxisomes, enabling accurate measurements of the size of all Pex3-labeled peroxisomes.
View Article and Find Full Text PDFAMB Express
August 2024
Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development.
View Article and Find Full Text PDFMicrob Cell Fact
July 2024
Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
Background: Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!