AI Article Synopsis

  • Percutaneous renal biopsy is used to diagnose kidney cancer, but it faces challenges in accurately sampling tissues.
  • A new optical coherence tomography probe was developed to differentiate between tumor and normal tissues, improving biopsy guidance and accuracy.
  • Convolutional neural networks were utilized to enhance tissue recognition, achieving 99.1% accuracy in identifying carcinoma and distinguishing oncocytoma, ultimately improving diagnosis during biopsy procedures.

Article Abstract

Percutaneous renal biopsy is commonly used for kidney cancer diagnosis. However, the biopsy procedure remains challenging in sampling accuracy. Here we introduce a forward-viewing optical coherence tomography probe for differentiating tumor and normal tissues, aiming at precise biopsy guidance. Totally, ten human kidney samples, nine of which had malignant renal carcinoma and one had benign oncocytoma, were used for system evaluation. Based on their distinct imaging features, carcinoma could be efficiently distinguished from normal renal tissues. Additionally, oncocytoma could be differentiated from carcinoma. We developed convolutional neural networks for tissue recognition. Compared to the conventional attenuation coefficient method, convolutional neural network models provided more accurate carcinoma predictions. These models reached a tissue recognition accuracy of 99.1% on a hold-out set of four kidney samples. Furthermore, they could efficiently distinguish oncocytoma from carcinoma. In conclusion, our convolutional neural network-aided endoscopic imaging platform could enhance carcinoma diagnosis during percutaneous renal biopsy procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297278PMC
http://dx.doi.org/10.1038/s44172-024-00254-9DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
renal carcinoma
8
biopsy guidance
8
optical coherence
8
coherence tomography
8
percutaneous renal
8
renal biopsy
8
kidney samples
8
tissue recognition
8
carcinoma
7

Similar Publications

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.

View Article and Find Full Text PDF

A deep learning based model for diabetic retinopathy grading.

Sci Rep

January 2025

Department of Networks and Cybersecurity, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.

Diabetic retinopathy stands as a leading cause of blindness among people. Manual examination of DR images is labor-intensive and prone to error. Existing methods to detect this disease often rely on handcrafted features which limit the adaptability and classification accuracy.

View Article and Find Full Text PDF

Adenoid hypertrophy, characterized by the abnormal enlargement of adenoid tissue, is a condition that can cause significant breathing and sleep disturbances, particularly in children. Accurate diagnosis of adenoid hypertrophy is critical, yet traditional methods, such as imaging and manual interpretation, are prone to errors. This study uses an ensemble deep learning-based approach for adenoid classification.

View Article and Find Full Text PDF

Multimodal cross-scale context clusters for classification of mental disorders using functional and structural MRI.

Neural Netw

January 2025

The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

The brain is a complex system with multiple scales and hierarchies, making it challenging to identify abnormalities in individuals with mental disorders. The dynamic segregation and integration of activities across brain regions enable flexible switching between local and global information processing modes. Modeling these scale dynamics within and between brain regions can uncover hidden correlates of brain structure and function in mental disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!