This paper investigates the fixed-time bipartite consensus control problem of stochastic nonlinear multi-agent systems (MASs) with performance constraints. A constraint scaling function is proposed to model the performance constraints with user-predefined steady-state accuracy and settling time without relying on the initial condition. Technically, the local synchronization error of each follower is mapped to a new error variable using the constraint scaling function and an error transformation function before being used to design the controller. To achieve fixed-time convergence of the local tracking error, a barrier function transforms the scaled synchronization error to a new variable to guarantee the prescribed performance. Then, an adaptive fuzzy fixed-time bipartite consensus controller is developed. The fuzzy logic system handles the uncertainties in the designing procedures, and one adaptive parameter needs to be estimated online. It is shown that the closed-loop system has practical fixed-time stability in probability, and the antagonistic network's consensus error evolves within user-predefined performance constraints. The simulation results evaluate the effectiveness of the developed control scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.07.004DOI Listing

Publication Analysis

Top Keywords

performance constraints
16
fixed-time bipartite
12
bipartite consensus
12
adaptive fuzzy
8
fuzzy fixed-time
8
consensus control
8
stochastic nonlinear
8
nonlinear multi-agent
8
multi-agent systems
8
constraint scaling
8

Similar Publications

This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.

View Article and Find Full Text PDF

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!