Characteristics of catalytic destruction of dichloromethane and ethyl acetate mixture over HPO-RuO/CeO catalyst.

J Environ Sci (China)

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310058, China.

Published: February 2025

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HPO-RuO/CeO catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HPO/CeO) promoted DCM activation on basic sites (O) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuO/CeO), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2023.05.011DOI Listing

Publication Analysis

Top Keywords

catalytic destruction
12
ethyl acetate
8
hpo-ruo/ceo catalyst
8
dcm oxidation
8
chlorine deposition
8
dcm
7
oxidation
6
characteristics catalytic
4
destruction dichloromethane
4
dichloromethane ethyl
4

Similar Publications

The origin of complex life and the evolution of terrestrial ecosystems are fundamental aspects of the natural history on Earth. Here, we present evidence for a protracted stabilization of the Earth's ozone layer. The destruction of atmospheric ozone today is inherently linked to the cycling of marine and atmospheric iodine.

View Article and Find Full Text PDF

Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal.

Environ Res

January 2025

Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Electrochemical destruction of PFAS at low oxidation potential enabled by CeO electrodes utilizing adsorption and activation strategies.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:

The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!