Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent advances in calcium imaging, including the development of fast and sensitive genetically encoded indicators, high-resolution camera chips for wide-field imaging, and resonant scanning mirrors in laser scanning microscopy, have notably improved the temporal and spatial resolution of functional imaging analysis. Nonetheless, the variability of imaging approaches and brain structures challenges the development of versatile and reliable segmentation methods. Standard techniques, such as manual selection of regions of interest or machine learning solutions, often fall short due to either user bias, non-transferability among systems, or computational demand. To overcome these issues, we developed CalciSeg, a data-driven and reproducible approach for unsupervised functional calcium imaging data segmentation. CalciSeg addresses the challenges associated with brain structure variability and user bias by offering a computationally efficient solution for automatic image segmentation based on two parameters: regions' size limits and number of refinement iterations. We evaluated CalciSeg efficacy on datasets of varied complexity, different insect species (locusts, bees, and cockroaches), and imaging systems (wide-field, confocal, and multiphoton), showing the robustness and generality of our approach. Finally, the user-friendly nature and open-source availability of CalciSeg facilitate the integration of this algorithm into existing analysis pipelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!