Background:  Platelets are anucleate cells that play an important role in wound closure following vessel injury. Maintaining a constant platelet volume is critical for platelet function. For example, water-induced swelling can promote procoagulant activity and initiate thrombosis. However, techniques for measuring changes in platelet volume such as light transmittance or impedance techniques have inherent limitations as they only allow qualitative measurements or do not work on the single-cell level.

Methods:  Here, we introduce high-speed scanning ion conductance microscopy (HS-SICM) as a new platform for studying volume regulation mechanisms of individual platelets. We optimized HS-SICM to quantitatively image the morphology of adherent platelets as a function of time at scanning speeds up to 7 seconds per frame and with 0.1 fL precision.

Results:  We demonstrate that HS-SICM can quantitatively measure the rapid swelling of individual platelets after a hypotonic shock and the following regulatory volume decrease (RVD). We found that the RVD of thrombin-, ADP-, and collagen-activated platelets was significantly reduced compared with nonactivated platelets. Applying the Boyle-van't Hoff relationship allowed us to extract the nonosmotic volume and volume fraction on a single-platelet level. Activation by thrombin or ADP, but not by collagen, resulted in a decrease of the nonosmotic volume, likely due to a release reaction, leaving the total volume unaffected.

Conclusion:  This work shows that HS-SICM is a versatile tool for resolving rapid morphological changes and volume dynamics of adherent living platelets.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2378-9088DOI Listing

Publication Analysis

Top Keywords

nonosmotic volume
12
volume
11
volume regulation
8
high-speed scanning
8
scanning ion
8
ion conductance
8
conductance microscopy
8
platelet volume
8
individual platelets
8
hs-sicm quantitatively
8

Similar Publications

Protoplasts isolated from Arabidopsis leaves were used to study the initial stages of the plant cell response to osmotic stress. The role of sterols in these processes was investigated by their extraction from the protoplast plasma membrane in the presence of the oligosaccharide - methyl-β-cyclodextrin (MβCD). Depletion of membrane sterols caused by MβCD treatment did not alter protoplast volume under isosmotic conditions; however, volumes changed significantly when protoplasts were exposed to osmotic stress.

View Article and Find Full Text PDF

Background:  Platelets are anucleate cells that play an important role in wound closure following vessel injury. Maintaining a constant platelet volume is critical for platelet function. For example, water-induced swelling can promote procoagulant activity and initiate thrombosis.

View Article and Find Full Text PDF

Perioperative hyponatremia, due to non-osmotic release of the antidiuretic hormone arginine vasopressin, is a serious electrolyte disorder observed in connection with many types of surgery. Since blood loss during surgery contributes to the pathogenesis of hyponatremia, we explored the effect of bleeding on plasma sodium using a controlled hypotensive hemorrhage pig model. After 30-min baseline period, hemorrhage was induced by aspiration of blood during 30 min at mean arterial pressure <50 mmHg.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is classified into five stages with kidney failure being the most severe stage (stage G5). CKD conveys a high risk for coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. Cardiovascular complications are the most common causes of death in patients with kidney failure (stage G5) who are maintained on regular dialysis treatment.

View Article and Find Full Text PDF

This study aimed to investigate the specific role of nitric oxide (NO) in micro- and macrovascular response to a 7-day high-salt (HS) diet, specifically by measuring skin microvascular local thermal hyperemia and the flow-mediated dilation of the brachial artery, as well as serum NO and three NO synthase enzyme (NOS) isoform concentrations in healthy individuals. It also aimed to examine the concept of non-osmotic sodium storage in the skin following the HS diet by measuring body fluid status and systemic hemodynamic responses, as well as serum vascular endothelial growth factor C (VEGF-C) concentration. Forty-six young, healthy individuals completed a 7-day low-salt diet, followed by a 7-day HS diet protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!