Population genomics of Fusarium graminearum isolates from the Americas.

Fungal Genet Biol

Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA. Electronic address:

Published: September 2024

Fusarium head blight (FHB) is a major disease of wheat and barley worldwide and is caused by different species in the genus Fusarium, Fusarium graminearum being the most important. We conducted population genomics analyses using SNPs obtained through genotyping by sequencing of over 500 isolates of F. graminearum from the US Upper Midwest, New York, Louisiana, and Uruguay. PCA and STRUCTURE analyses group our isolates into four previously described populations: NA1, NA2, Southern Louisiana (SLA) and Gulf Coast (GC). Some isolates were not assigned to populations because of mixed ancestry. Population structure was associated with toxin genotype and geographic origin. The NA1, NA2, and SLA populations are differentiated (F 0.385 - 0.551) but the presence of admixed isolates indicates that the populations are not reproductively isolated. Patterns of linkage disequilibrium (LD) decay suggest frequent recombination within populations. Fusarium graminearum populations from the US have great evolutionary potential given the high recombination rate and a large proportion of admixed isolates. The NA1, NA2, and Southern Louisiana (SLA) populations separated from their common ancestral population roughly at the same time in the past and are evolving with moderate levels of subsequent gene flow between them. Genome-wide selection scans in all three populations revealed outlier regions with the strongest signatures of recent positive natural selection. These outlier regions include many genes with unknown function and some genes with known roles in plant-microbe interaction, fungicide/drug resistance, cellular transport and genes that are related to cellular organelles. Only a very small proportion of outlier regions are shared as outliers among the three populations, suggesting unique host-pathogen interactions and environmental adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2024.103924DOI Listing

Publication Analysis

Top Keywords

fusarium graminearum
12
na1 na2
12
outlier regions
12
populations
9
population genomics
8
na2 southern
8
southern louisiana
8
louisiana sla
8
sla populations
8
admixed isolates
8

Similar Publications

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!