Cyanobacteria in water supplies are considered an emerging threat, as some species produce toxic metabolites, cyanotoxins, of which the most widespread and well-studied are microcystins. Consumption of contaminated water is a common exposure route to cyanotoxins, making the study of cyanobacteria in drinking waters a priority to protect public health. In drinking water treatment plants, pre-oxidation with chlorinated compounds is widely employed to inhibit cyanobacterial growth, although concerns on its efficacy in reducing cyanotoxin content exists. Additionally, the effects of chlorination on abundant but less-studied cyanometabolites (e.g. cyanopeptolins whose toxicity is still unclear) remain poorly investigated. Here, two chlorinated oxidants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO), were tested on the toxic cyanobacterium Microcystis aeruginosa, evaluating their effect on cell viability, toxin profile and content. Intra- and extracellular microcystins and other cyanometabolites, including their degradation products, were identified using an untargeted LC-HRMS approach. Both oxidants were able to inactivate M. aeruginosa cells at a low dose (0.5 mg L), and greatly reduced intracellular toxins content (>90%), regardless of the treatment time (1-3 h). Conversely, a two-fold increase of extracellular toxins after NaClO treatment emerged, suggesting a cellular damage. A novel metabolite named cyanopeptolin-type peptide-1029, was identified based on LC-HRMS (n = 2, 3) evidence, and it was differently affected by the two oxidants. NaClO led to increase its extracellular concentration from 2 to 80-100 μg L, and ClO induced the formation of its oxidized derivative, cyanopeptolin-type peptide-1045. In conclusion, pre-oxidation treatments of raw water contaminated by toxic cyanobacteria may lead to increased cyanotoxin concentrations in drinking water and, depending on the chemical agent, its dose and treatment duration, also of oxidized metabolites. Since the effects of such metabolites on human health remain unknown, this issue should be handled with extreme caution by water security agencies involved in drinking water management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142976DOI Listing

Publication Analysis

Top Keywords

drinking water
12
untargeted lc-hrms
8
water
8
increase extracellular
8
lc-hrms applied
4
applied microcystin-producing
4
microcystin-producing cyanobacterial
4
cyanobacterial cultures
4
cultures evaluation
4
evaluation efficiency
4

Similar Publications

Human Aichi virus 1 (AiV-1) is a water- and food-borne infection-associated picornavirus that causes gastroenteritis in humans. Recent studies on environmental waters showed a high frequency and abundance of AiV-1, suggesting that it might be an appropriate indicator of fecal contamination. We screened 450 surface and drinking water samples from a Tunisian drinking water treatment plant (DWTP) and the Sidi Salem dam for AiV-1 by real time reverse transcriptase PCR (RT-qPCR).

View Article and Find Full Text PDF

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.

View Article and Find Full Text PDF

Behavioral copying is a key process in group actions, but it is challenging for individuals with autism spectrum disorder (ASD). We investigated behavioral contagion, or instinctual replication of behaviors, in Krushinky-Molodkina (KM) rats ( = 16), a new potential rodent model for ASD, compared to control Wistar rats ( = 15). A randomly chosen healthy Wistar male ("demonstrator rat") was introduced to the homecage of experimental rats ("observers") 10-14 days before the experiments to become a member of the group.

View Article and Find Full Text PDF

Background: Given the lack of models for carotid artery dissections (CAD), we aim to investigate effects of beta-aminopropionitrile (BAPN) combined with physical damage on the arterial walls of rats, and to establish a high-incidence and low-mortality CAD model.

Methods: Sixteen SPF SD rats (3-week-old) were divided into two groups. Group B was given 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!