Impact of long-term irrigation practices on distribution and speciation of arsenic in agricultural soil.

Ecotoxicol Environ Saf

State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.

Published: September 2024

To better understand the impact of long-term irrigation practices on arsenic (As) accumulation in agricultural soils, 100 soil samples from depths of 0-20 cm were collected from the Datong basin, where the As-contaminated groundwater has been used for irrigation for several decades. Soil samples were analyzed for major elements, trace elements, and As, Fe speciation. Results reveal As content ranging from 4.00 to 14.5 mg/kg, an average of 10.2 ± 2.05 mg/kg, consistent with surveys conducted in 1998 and 2007. Arsenic speciation ranked in descending order as follows: As associated with silicate minerals (As, 29.70 ± 7.53 %) > amorphous Fe-minerals associated As (As, 26.40 ± 3.27 %) > crystalline Fe-minerals associated As (As, 24.02 ± 4.60 %) > strongly adsorbed As (As, 14.29 ± 2.81 %) > As combined with carbonates and Fe-carbonates (As, 2.30 ± 0.44 %) > weakly adsorbed As (As, 2.59 ± 1.00 %). The anomalous negative correlation between As and Fe content reflects the primary influence of soil provenance. Evidence from major element compositions and rare earth element patterns indicates that total As and Fe contents in soils are controlled by parent materials, exhibiting distinct north-south differences (As: higher levels in the north, lower levels in the south; Fe: higher levels in the south, lower levels in the north). Evidence from the Chemical Index of Alteration (CIA) and As/Ti ratio suggests that chemical weathering has led to As enrichment in the central basin. Notably, relationships such as As/Ti, As/Ti with CIA and total Fe content indicate significant influences of irrigation practices on adsorbed As (both weakly and strongly adsorbed) contents, showing a pattern of higher levels in the central basin and lower levels in the Piedmont. However, total As content remained stable after long-term irrigation, potentially due to the re-release of accumulated As via geochemical pathways during non-irrigated periods. These findings demonstrate that the soil systems can naturally remediate exogenous As contamination induced by irrigation practices. Quantitative assessment of the balance between As enrichment and re-release in soil systems is crucial for preventing soil As contamination, highlighting strategies like water-saving techniques and fallow periods to manage As contamination in agricultural areas using As-contaminated groundwater for irrigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116825DOI Listing

Publication Analysis

Top Keywords

irrigation practices
16
long-term irrigation
12
higher levels
12
lower levels
12
impact long-term
8
soil samples
8
as-contaminated groundwater
8
groundwater irrigation
8
fe-minerals associated
8
weakly adsorbed
8

Similar Publications

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.

View Article and Find Full Text PDF

of long-term and future climate variability is crucial for impact assessment studies in drought-prone areas like the Giba basin in northern Ethiopia. This study has applied the statistical downscaling model (SDSM) and (De Martonne and Pinna combinative) aridity index methods to evaluate the climate system of the Giba basin. Historical data (1961-2019) from seven meteorological stations and global grided data were used for future climate projections (2020-2100) under the three emission scenarios (RCPs 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!