A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel fluorescent nanoplatform for all-in-one sensing and removal of acrolein: An ultrasensitive probe to evaluate its removal efficiency. | LitMetric

As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots‑manganese dioxide (CDs-MnO) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn to free Mn, GSH inhibited the inner filter effect (IFE) of MnO nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 μM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140667DOI Listing

Publication Analysis

Top Keywords

fluorescent nanoplatform
12
removal acrolein
12
novel fluorescent
8
all-in-one sensing
8
sensing removal
8
gsh inhibited
8
acrolein
7
nanoplatform
4
nanoplatform all-in-one
4
removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!