Insoluble dietary fiber (IDF) isolated through co-fermented bran from probiotics may improve starch gel-based foods. This work aimed to elucidate the comprehensive impact of different IDF samples (CK, unfermented; NF, natively fermented; YF, yeast fermented; LF, Lactobacillus plantarum fermented; and MF, mix-fermented) and their addition ratios (0.3-0.9%) on gel structure-property function. Results indicated that IDF introduction altered the starch pasting behavior (decreased the viscosity and advanced the pasting time). Also, YF, LF, and MF showed less effect on gel multiscale morphology (SEM and CLSM); however, their excessively high ratio resulted in network structure deterioration. Moreover, FT-IR, XRD, and Raman characterization identified the composite gels interaction mechanisms mainly by hydrogen bonding forces, van der Waals forces, water competition, and physical entanglement. This modulation improved the composite gel water distribution, rheological/stress-strain behavior, textural properties, color, stability, and digestive characteristics. The obtained findings may shed light on the construction and development of whole-grain gel-based food products with new perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!