Purpose: Diagnosing pulmonary embolism (PE) is still challenging due to other conditions that can mimic its appearance, leading to incomplete or delayed management and several inter-observer variabilities. This study evaluated the performance and clinical utility of an artificial intelligence (AI)-based application designed to assist clinicians in the detection of PE on CT pulmonary angiography (CTPA).

Patients And Methods: CTPAs from 230 US cities acquired on 57 scanner models from 6 different vendors were retrospectively collected. Three US board certified expert radiologists defined the ground truth by majority agreement. The same cases were analyzed by CINA-PE, an AI-driven algorithm capable of detecting and highlighting suspected PE locations. The algorithm's performance at a per-case and per-finding level was evaluated. Furthermore, cases with PE not mentioned in the clinical report but correctly detected by the algorithm were analyzed.

Results: A total of 1204 CTPAs (mean age 62.1 years ± 16.6[SD], 44.4 % female, 14.9 % positive) were included in the study. Per-case sensitivity and specificity were 93.9 % (95%CI: 89.3 %-96.9 %) and 94.8 % (95%CI: 93.3 %-96.1 %), respectively. Per-finding positive predictive value was 89.5 % (95%CI: 86.7 %-91.9 %). Among the 196 positive cases, 29 (15.6 %) were not mentioned in the clinical report. The algorithm detected 22/29 (76 %) of these cases, leading to a reduction in the miss rate from 15.6 % to 3.8 % (7/186).

Conclusions: The AI-based application may improve diagnostic accuracy in detecting PE and enhance patient outcomes through timely intervention. Integrating AI tools in clinical workflows can reduce missed or delayed diagnoses, and positively impact healthcare delivery and patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2024.110245DOI Listing

Publication Analysis

Top Keywords

performance clinical
8
clinical utility
8
utility artificial
8
pulmonary embolism
8
ai-based application
8
mentioned clinical
8
clinical report
8
artificial intelligence-enabled
4
intelligence-enabled tool
4
tool pulmonary
4

Similar Publications

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models.

Genet Med

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:

Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.

View Article and Find Full Text PDF

Purpose: To examine associations between clinical measures (self-reported and clinician-administered) and subsequent injury rates in the year after concussion return to play (RTP) among adolescent athletes.

Methods: We performed a prospective, longitudinal study of adolescents ages 13-18 years. Each participant was initially assessed within 21 days of concussion and again within 5 days of receiving RTP clearance from their physician.

View Article and Find Full Text PDF

Background: Head and neck cancer (HNC) is amongst the 10 most common cancers worldwide and has a major effect on patients' quality of life. Given the complexity of this unique group of patients, a multidisciplinary team approach is preferable. Amongst the debilitating sequels of HNC and/or its treatment, swallowing, speech and voice impairments are prevalent and require the involvement of speech-language pathologists (SLPs).

View Article and Find Full Text PDF

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) gene polymorphism (rs638405) has been widely reported to be associated with Alzheimer's disease (AD) risk. However, studies on the relationship between BACE1 gene polymorphism (rs638405), brain volume, and cognition in AD patients remain scarce. To investigate the effect of genetic polymorphism in BACE1 on gray matter volume (GMV) and cognition in AD, this study recruited 111 cognitively unimpaired (CU) controls and 144 AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!