Functionalized hydrogels, with their unique and adaptable structures, have attracted significant attention in materials and biomaterials research. Fluorescent hydrogels are particularly noteworthy for their sensing capabilities and ability to mimic cellular matrices, facilitating cell infiltration and tracking of drug delivery. Structural elucidation of hydrogels is crucial for understanding their responses to stimuli such as the pH, temperature, and solvents. This study developed a fluorescent hydrogel by functionalizing chitosan with -cresol-based quinazolinone aldehyde. Confocal microscopy revealed the hydrogel's intriguing fluorogenic properties. The hydrogel exhibited enhanced fluorescence and a tunable network morphology, influenced by the THF-water ratio. The study investigated the control of gel network reformation in different media and analyzed the fluorescence responses and structural changes of the sugar backbone and fluorophore. Proper selection of mixed solvents is essential for optimizing the hydrogel as a fluorescence probe for bioimaging. This hydrogel demonstrated greater swelling properties, making it highly suitable for drug delivery applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c00696 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Strasbourg, UMR 7213 CNRS, 74, Route du Rhin, 67401, Illkirch-Strasbourg, FRANCE.
Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China.
A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt.
Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm.
View Article and Find Full Text PDFJ Adv Res
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:
Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.
Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!