Viscosity of protein solutions is a critical product quality attribute for protein therapeutics such as monoclonal antibodies. Here we introduce a portable single-use analytical chip-based viscometer for determining the viscosity of protein solutions using low sample volumes of 10 μL. Through the combined use of a microfluidic viscometer, a smartphone camera for image capture, and an automated data processing algorithm for the calculation of the viscosity of fluids, we enable measurement of viscosity of multiple samples in parallel. We first validate the viscometer using glycerol-water mixtures and subsequently demonstrate the ability to perform rapid characterization of viscosity in four different monoclonal antibody formulations in a broad concentration (1 to 320 mg/mL) and viscosity (1 to 600 cP) range, showing excellent agreement with values obtained by a conventional cone-plate rheometer. Not only does the platform offer benefits of viscosity measurements using minimal sample volumes, but enables higher throughput compared to gold-standard methodologies owing to multiplexing of the measurement and single-use characteristics of the viscometer, thus showing great promise in developability studies. Additionally, as our platform has the capability of performing viscosity measurements at the point of sample collection, it offers the opportunity to employ viscosity measurement as an in situ quality control of therapeutic proteins and antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325293PMC
http://dx.doi.org/10.1021/acs.analchem.4c02099DOI Listing

Publication Analysis

Top Keywords

viscosity
9
microfluidic viscometer
8
situ quality
8
quality control
8
viscosity protein
8
protein solutions
8
sample volumes
8
viscosity measurements
8
viscometer
5
portable microfluidic
4

Similar Publications

The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.

View Article and Find Full Text PDF

Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach.

Sci Rep

January 2025

BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.

Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.

View Article and Find Full Text PDF

Prospects of cowpea protein as an alternative and natural emulsifier for food applications: Effect of pH and oil concentration.

Int J Biol Macromol

January 2025

Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:

In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.

View Article and Find Full Text PDF

Melt electrowriting of amorphous solid dispersions: Influence of drug and plasticizer on rheology and printing performance.

Int J Pharm

January 2025

Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:

Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!