AI Article Synopsis

  • * The study analyzes RNA sequencing data from 486 meningioma samples across three DNA methylation groups, discovering key splicing alterations that correlate with tumor recurrence and patient outcomes, while also identifying important splicing factors like SRSF1 in Hypermitotic meningiomas.
  • * The findings emphasize RNA splicing as a crucial aspect of meningioma characteristics, presenting opportunities for prognostic tools and novel RNA-based therapies targeting identified splicing changes.

Article Abstract

Background: Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA-methylation signatures have on meningioma biology.

Methods: This study utilizes RNA-sequencing data from 486 meningioma samples corresponding to 3 meningioma DNA-methylation groups (merlin-intact, immune-enriched, and hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines.

Results: We identify alterations in RNA splicing between meningioma DNA-methylation groups including individual splicing events that correlate with hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA-methylation classification based on RNA-seq data. Furthermore, we validate these events using reverse transcription polymerase chain reaction (RT-PCR) in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA-binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice-switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design.

Conclusions: RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630566PMC
http://dx.doi.org/10.1093/neuonc/noae150DOI Listing

Publication Analysis

Top Keywords

rna splicing
24
meningioma dna-methylation
12
dna-methylation groups
12
splicing events
12
hypermitotic meningiomas
12
meningioma
8
driver meningioma
8
patient prognosis
8
tumor recurrence
8
meningioma cell
8

Similar Publications

Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu.

View Article and Find Full Text PDF

Decoding TDP-43: the molecular chameleon of neurodegenerative diseases.

Acta Neuropathol Commun

December 2024

Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.

TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis.

View Article and Find Full Text PDF

Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses.

BMC Genomics

December 2024

School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.

Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.

View Article and Find Full Text PDF

Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury.

Sci Rep

December 2024

Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.

Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis.

View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!