Background: Together with an increased interest in minimally invasive lateral transpsoas approach to the lumbar spine goes a demand for detailed anatomical descriptions of the lumbar plexus. Although definitions of safe zones and essential descriptions of topographical anatomy have been presented in several studies, the existing literature expects standard appearance of the neural structures. Therefore, the aim of this study was to investigate the variability of the extrapsoas portion of the lumbar plexus in regard to the lateral transpsoas approach.

Methods: A total of 260 lumbar regions from embalmed cadavers were utilized in this study. The specimens were dissected as per protocol and all nerves from the lumbar plexus were morphologically evaluated.

Results: The most common variation of the iliohypogastric and ilioinguinal nerves was fusion of these two nerves (9.6%). Nearly in the half of the cases (48.1%) the genitofemoral nerve left the psoas major muscle already divided into the femoral and genital branches. The lateral femoral cutaneous nerve was the least variable one as it resembled its normal morphology in 95.0% of cases. Regarding the variant origins of the femoral nerve, there was a low formation outside the psoas major muscle in 3.8% of cases. The obturator nerve was not variable at its emergence point but frequently branched (40.4%) before entering the obturator canal. In addition to the proper femoral and obturator nerves, accessory nerves were present in 12.3% and 9.2% of cases, respectively.

Conclusion: Nerves of the lumbar plexus frequently show atypical anatomy outside the psoas major muscle. The presented study provides a compendious information source of the possibly encountered neural variations during retroperitoneal access to different segments of the lumbar spine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297108PMC
http://dx.doi.org/10.1007/s00701-024-06216-6DOI Listing

Publication Analysis

Top Keywords

lumbar plexus
20
lateral transpsoas
12
lumbar spine
12
psoas major
12
major muscle
12
lumbar
9
transpsoas approach
8
approach lumbar
8
nerves lumbar
8
nerve variable
8

Similar Publications

Background And Purpose: Current treatments for peripheral nerve defects are suboptimal. Mesenchymal stem cell (MSC) implantation holds promise, with studies indicating their efficacy through the secretome. This study aims to assess the secretome's potency in regenerating peripheral nerve defects.

View Article and Find Full Text PDF

Background: Hereditary Multiple Osteochondromas (HMO), previously known as Multiple Hereditary Exostoses (MHE), is a genetic disorder characterized by the formation of multiple, benign, exostoses (osteochondromas) growing from the metaphyseal region of long bones as well as from the axial skeleton. Lesions originating from the lumbar spine region are rare, and are most common growing from the posterior element of the vertebrae. HMO associated osteochondromas are difficult to treat due to continuous and incontrollable growth of these lesions and a lifetime risk for malignant transformation.

View Article and Find Full Text PDF

Background: Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI).

View Article and Find Full Text PDF

Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.

Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.

View Article and Find Full Text PDF

Clonus is characterized by involuntary, rhythmic, oscillatory muscle contractions, typically triggered by rapid muscle stretching and is frequently associated with spastic equinovarus foot (SEVF), where it may increase risk of falls and cause discomfort, pain, and sleep disorders. We hypothesize that selective diagnostic nerve block (DNB) of the tibial nerve motor branches can help identify which muscle is primarily responsible for clonus in patients with SEVF and provide useful information for botulinum neurotoxin type A (BoNT-A) treatment. This retrospective study explored which calf muscles contributed to clonus in 91 patients with SEFV after stroke (n = 31), multiple sclerosis (n = 21), and cerebral palsy (n = 39), using selective DNB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!