A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MetalTrans: A Biological Language Model-Based Approach for Predicting Disease-Associated Mutations in Protein Metal-Binding Sites. | LitMetric

The critical importance of accurately predicting mutations in protein metal-binding sites for advancing drug discovery and enhancing disease diagnostic processes cannot be overstated. In response to this imperative, MetalTrans emerges as an accurate predictor for disease-associated mutations in protein metal-binding sites. The core innovation of MetalTrans lies in its seamless integration of multifeature splicing with the Transformer framework, a strategy that ensures exhaustive feature extraction. Central to MetalTrans's effectiveness is its deep feature combination strategy, which merges evolutionary-scale modeling amino acid embeddings with ProtTrans embeddings, thus shedding light on the biochemical properties of proteins. Employing the Transformer component, MetalTrans leverages the self-attention mechanism to delve into higher-level representations. Utilizing mutation site information for feature fusion not only enriches the feature set but also sidesteps the common pitfall of overestimation linked to protein sequence-based predictions. This nuanced approach to feature fusion is a key differentiator, enabling MetalTrans to outperform existing methods significantly, as evidenced by comparative analyses. Our evaluations across varied metal binding site data sets (specifically Zn, Ca, Mg, and Mix) underscore MetalTrans's superior performance, which achieved the average AUC values of 0.971, 0.965, 0.980, and 0.945 on multiple 5-fold cross-validation, respectively. Remarkably, against the multichannel convolutional neural network method on a benchmark independent test set, MetalTrans demonstrated unparalleled robustness and superiority, boasting the AUC score of 0.998 on multiple 5-fold cross-validation. Our comprehensive examination of the predicted outcomes further confirms the effectiveness of the model. The source codes, data sets, and prediction results for MetalTrans can be accessed for academic usage at https://github.com/EduardWang/MetalTrans.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c00739DOI Listing

Publication Analysis

Top Keywords

mutations protein
12
protein metal-binding
12
metal-binding sites
12
disease-associated mutations
8
feature fusion
8
data sets
8
multiple 5-fold
8
5-fold cross-validation
8
metaltrans
7
feature
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!