Recent endeavors have led to the exploration of Machine Learning (ML) to enhance the detection and accurate diagnosis of heart pathologies. This is due to the growing need to improve efficiency in diagnostics and hasten the process of delivering treatment. Several institutions have actively assessed the possibility of creating algorithms for advancing our understanding of atrial fibrillation (AF), a common form of sustained arrhythmia. This means that artificial intelligence is now being used to analyze electrocardiogram (ECG) data. The data is typically extracted from large patient databases and then subsequently used to train and test the algorithm with the help of neural networks. Machine learning has been used to effectively detect atrial fibrillation with more accuracy than clinical experts, and if applied to clinical practice, it will aid in early diagnosis and management of the condition and thus reduce thromboembolic complications of the disease. In this text, a review of the application of machine learning in the analysis and detection of atrial fibrillation, a comparison of the outcomes (sensitivity, specificity, and accuracy), and the framework and methods of the studies conducted have been presented.

Download full-text PDF

Source
http://dx.doi.org/10.2174/011573403X293703240715104503DOI Listing

Publication Analysis

Top Keywords

machine learning
16
atrial fibrillation
16
detection atrial
8
systematic review
4
review effectiveness
4
machine
4
effectiveness machine
4
learning
4
learning detection
4
atrial
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!