Cancer stands as a prominent global cause of mortality, with chemotherapy using synthetic drugs being the predominant treatment method. Despite its high success rate, this approach is constrained by substantial side effects. Herbal medicines, known for their diverse bioactive components, exhibit promising anticancer attributes. The drug delivery systems can improve the precision of delivering these herbal compounds, enhancing efficacy while minimizing potential side effects. Various platforms, such as nanoparticle-based carriers, liposomes, and polymeric micelles, are investigated for encapsulating and delivering herbal components to cancer cells. These systems not only enhance the bioavailability of herbal compounds but also facilitate controlled release, sustained drug circulation, and improved cellular uptake. This comprehensive review focuses on the recent advancement in the field of drug delivery systems employed in the delivery of plant-derived anticancer compounds. It categorizes carriers into organic and inorganic nanoparticles, addressing their application in enhancing the safety and efficacy of plant-derived anticancer compounds alongside associated challenges. The review concludes by outlining recent investigations into drug delivery systems aimed at increasing the efficacy of plant-derived anticancer compounds. Future research in this field should emphasize experiments in animal models and potential clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115680266315985240710063754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!