Huntington's disease (HD) is a fatal neurodegenerative disorder resulting from an abnormal expansion of polyglutamine (polyQ) repeats in the N-terminus of the huntingtin protein. When the polyQ tract surpasses 35 repeats, the mutated protein undergoes misfolding, culminating in the formation of intracellular aggregates. Research in mouse models suggests that HD pathogenesis involves the aggregation of N-terminal fragments of the huntingtin protein (htt). These early oligomeric assemblies of htt, exhibiting diverse characteristics during aggregation, are implicated as potential toxic entities in HD. However, a consensus on their specific structures remains elusive. Understanding the heterogeneous nature of htt oligomers provides crucial insights into disease mechanisms, emphasizing the need to identify various oligomeric conformations as potential therapeutic targets. Employing coarse-grained molecular dynamics, our study aims to elucidate the mechanisms governing the aggregation process and resultant aggregate architectures of htt. The polyQ tract within htt is flanked by two regions: an N-terminal domain (N17) and a short C-terminal proline-rich segment. We conducted self-assembly simulations involving five distinct N17 + polyQ systems with polyQ lengths ranging from 7 to 45, utilizing the ProMPT force field. Prolongation of the polyQ domain correlates with an increase in β-sheet-rich structures. Longer polyQ lengths favor intramolecular β-sheets over intermolecular interactions due to the folding of the elongated polyQ domain into hairpin-rich conformations. Importantly, variations in polyQ length significantly influence resulting oligomeric structures. Shorter polyQ domains lead to N17 domain aggregation, forming a hydrophobic core, while longer polyQ lengths introduce a competition between N17 hydrophobic interactions and polyQ polar interactions, resulting in densely packed polyQ cores with outwardly distributed N17 domains. Additionally, at extended polyQ lengths, we observe distinct oligomeric conformations with varying degrees of N17 bundling. These findings can help explain the toxic gain-of-function that htt with expanded polyQ acquires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c03274 | DOI Listing |
Neurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFPLoS One
December 2024
Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.
Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.
View Article and Find Full Text PDFMol Cell Biol
December 2024
Department of Biology, University of Iowa, Iowa City, Iowa, USA.
Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.
View Article and Find Full Text PDFBrain Commun
November 2024
Department of Neurodegenerative Disease, Huntington's Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!