Single Molecule Localisation Microscopy (SMLM) is becoming a widely used technique in cell biology. After processing the images, the molecular localisations are typically stored in a table as xy (or xyz) coordinates, with additional information, such as number of photons, etc. This set of coordinates can be used to generate an image to visualise the molecular distribution, for example, a 2D or 3D histogram of localisations. Many different methods have been devised to analyse SMLM data, among which cluster analysis of the localisations is popular. However, it can be useful to first segment the data, to extract the localisations in a specific region of a cell or in individual cells, prior to downstream analysis. Here we describe a pipeline for annotating localisations in an SMLM dataset in which we compared membrane segmentation approaches, including Otsu thresholding and machine learning models, and subsequent cell segmentation. We used an SMLM dataset derived from dSTORM images of sectioned cell pellets, stained for the membrane proteins EGFR (epidermal growth factor receptor) and EREG (epiregulin) as a test dataset. We found that a Cellpose model retrained on our data performed the best in the membrane segmentation task, allowing us to perform downstream cluster analysis of membrane versus cell interior localisations. We anticipate this will be generally useful for SMLM analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.13349 | DOI Listing |
Arch Dermatol Res
January 2025
Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
Morphea is a chronic inflammatory fibrosing disorder. Since fibrosis is the hallmark of both scars and morphea, our attention was raised for the possible use of Fractional Ablative CO lasers and microneedling as treatment modalities for morphea. To compare the efficacy and safety of Fractional Ablative CO lasers and microneedling in the treatment of morphea.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.
View Article and Find Full Text PDFAAPS J
January 2025
Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000, Liège, Belgium.
In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
Cholesterol plays a pivotal role in modulating the activity of mechanistic target of rapamycin complex 1 (mTOR1), thereby regulating cell growth and metabolic homeostasis. LYCHOS, a lysosome-localized G-protein-coupled receptor-like protein, emerges as a cholesterol sensor and is capable of transducing the cholesterol signal to affect the mTORC1 function. However, the precise mechanism by which LYCHOS recognizes cholesterol remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!